Solution to Midterm 2

1. (a) By direct computation, we have the following.

$$
\begin{aligned}
\mathrm{RHS}= & \|x+y\|^{2}+\|x-y\|^{2} \\
= & \langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
= & \langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& +\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle \\
= & 2\|x\|^{2}+2\|y\|^{2}=\text { LHS }
\end{aligned}
$$

(b) Using the parallelogram law, we have the following.

$$
\begin{aligned}
2\|u\|^{2}+2\|v\|^{2} & =\|u+v\|^{2}+\|u-v\|^{2} \\
2(\sqrt{2})^{2}+2\|v\|^{2} & =(4)^{2}+(2)^{2} \\
\|v\| & =2 \sqrt{2}
\end{aligned}
$$

2. (a) By applying the Gram-Schmidt process, we have the following.

$$
\begin{aligned}
v_{1} & =1 \\
v_{2} & =x-\frac{\langle x, 1\rangle}{\langle 1,1\rangle} \cdot 1=x-\frac{1}{2} \\
v_{3} & =x^{2}-\frac{\left\langle x^{2}, 1\right\rangle}{\langle 1,1\rangle} \cdot 1-\frac{\left\langle x^{2}, x-\frac{1}{2}\right\rangle}{\left\langle x-\frac{1}{2}, x-\frac{1}{2}\right\rangle} \cdot\left(x-\frac{1}{2}\right) \\
& =x^{2}-\frac{1}{3}-\frac{\frac{1}{12}}{\frac{1}{12}}\left(x-\frac{1}{2}\right) \\
& =x^{2}-x+\frac{1}{6}
\end{aligned}
$$

Then we can normalize them to obtain an orthonormal basis.

$$
\begin{aligned}
& w_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=1 \\
& w_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=2 \sqrt{3}\left(x-\frac{1}{2}\right) \\
& w_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)
\end{aligned}
$$

Hence, we have $\beta^{\prime}=\left\{1,2 \sqrt{3}\left(x-\frac{1}{2}\right), 6 \sqrt{5}\left(x^{2}-x+\frac{1}{6}\right)\right\}$.
(b) Note that $\beta=\left\{1, x, x^{2}\right\}$ is a basis consisting of eigenvectors of T.

$$
T(1)=0, \quad T(x)=x, \quad T\left(x^{2}\right)=0
$$

Hence, T is diagonalizable.
(c) From the above, we see that

$$
\begin{aligned}
& T\left(w_{1}\right)=0 \\
& T\left(w_{2}\right)=2 \sqrt{3} x=\sqrt{3} w_{1}+w_{2} \\
& T\left(w_{3}\right)=-6 \sqrt{5} x=-\sqrt{15} w_{1}-\sqrt{15} w_{2}
\end{aligned}
$$

Note that β^{\prime} is an orthonormal basis for $P_{2}(\mathbb{R})$. However, we have

$$
[T]_{\beta^{\prime}}=\left(\begin{array}{ccc}
0 & \sqrt{3} & -\sqrt{15} \\
0 & 1 & -\sqrt{15} \\
0 & 0 & 0
\end{array}\right)
$$

which is not self-adjoint. So, T is not self-adjoint and there does not exist an orthonormal eigenbasis of $P_{2}(\mathbb{R})$ corresponding to T.
3. (a) For any $c \in \mathbb{F}$, we have the following.

$$
\begin{aligned}
T_{y, z}\left(x_{1}+c x_{2}\right) & =\left\langle x_{1}+c x_{2}, y\right\rangle z \\
& =\left\langle x_{1}, y\right\rangle z+c\left\langle x_{2}, y\right\rangle z \\
& =T_{y, z}\left(x_{1}\right)+c T_{y, z}\left(x_{2}\right)
\end{aligned}
$$

Hence, we see that $T_{y, z}$ is linear.
(b) For any $x \in V$, we have the following.

$$
\begin{aligned}
T_{w, v} T_{y, z}(x) & =T_{w, v}(\langle x, y\rangle z) \\
& =\langle(\langle x, y\rangle z), w\rangle v \\
& =\langle x, y\rangle\langle z, w\rangle v \quad \text { (note that }\langle x, y\rangle \text { is just a scalar) } \\
& =\langle x, y\rangle(\langle z, w\rangle v) \\
& =T_{y,\langle z, w\rangle v}(x)
\end{aligned}
$$

Hence, we have $T_{w, v} T_{y, z}=T_{y,\langle z, w\rangle v}$.
(c) Given $y, z \in V$, for any $w, x \in V$, we have the following.

$$
\begin{aligned}
\left\langle w, T_{y, z}^{*}(x)\right\rangle & =\left\langle T_{y, z}(w), x\right\rangle \\
& =\langle\langle w, y\rangle z, x\rangle \\
& =\langle w, y\rangle\langle z, x\rangle \quad \text { (again, }\langle w, y\rangle \text { is just a scalar) } \\
& =\langle w, \overline{\langle z, x\rangle} y\rangle \\
& =\langle w,\langle x, z\rangle y\rangle \\
& =\left\langle w, T_{z, y}(x)\right\rangle
\end{aligned}
$$

Since this is true for any $w, x \in V$, we have $T_{y, z}^{*}=T_{z, y}$.
(d) Note that $T_{y, z}$ is self-adjoint if and only if $T_{y, z}^{*}=T_{y, z}$. From (c), we see that this is true if and only if $T_{y, z}=T_{z, y}$, which means

$$
\langle x, y\rangle z=\langle x, z\rangle y
$$

for any $x \in V$.
Suppose $y=c z$ for some $c \in \mathbb{R}$, then the above is trivial. Conversely, if we have $\langle x, y\rangle z=\langle x, z\rangle y$ for any $x \in V$. If $\langle x, z\rangle=0$ for all $x \in V$, we have $z=0$ and the statement is trivial, so we may take $y=0$ and $c=0$. If $\langle x, z\rangle \neq 0$ for some $x \in V$, then we have $y=\frac{\langle x, y\rangle}{\langle x, z\rangle} z$. Then we can take $c=\frac{\langle x, y\rangle}{\langle x, z\rangle}$ and we have $y=c z$. Moreover, we have

$$
\langle x, z\rangle c z=\langle x, c z\rangle z=\langle x, z\rangle \bar{c} z,
$$

and hence, $c=\bar{c}$, which means c is real. Hence, $T_{y, z}$ is self-adjoint if and only if $y=c z$ for some $c \in \mathbb{R}$.
4. Note that

$$
\begin{aligned}
\|x+a y\|^{2} & =\langle x+a y, x+a y\rangle \\
& =\|x\|^{2}+\bar{a}\langle x, y\rangle+a\langle y, x\rangle+|a|\|y\|^{2} .
\end{aligned}
$$

Suppose x and y are orthogonal, we have

$$
\|x+a y\|^{2}=\|x\|^{2}+|a|\|y\|^{2} \geq\|x\|^{2} .
$$

Hence, $\|x\| \leq\|x+a y\|$.
Conversely, if $\|x\| \leq\|x+a y\|$, we have

$$
\bar{a}\langle x, y\rangle+a\langle y, x\rangle+|a|\|y\|^{2}=\|x+a y\|^{2}-\|x\|^{2} \geq 0
$$

for all $a \in \mathbb{F}$. For $y=0$, the statement is trivial. So let's assume $y \neq 0$. By taking $a=-\frac{\langle x, y\rangle}{\|y\|^{2}}$, we see that

$$
\begin{aligned}
-\frac{\overline{\langle x, y\rangle}}{\|y\|^{2}}\langle x, y\rangle-\frac{\langle x, y\rangle}{\|y\|^{2}}\langle y, x\rangle+\frac{|\langle x, y\rangle|^{2}}{\|y\|^{4}}\|y\|^{2} & \geq 0 \\
-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}}+\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}} & \geq 0 \\
-\frac{|\langle x, y\rangle|^{2}}{\|y\|^{2}} & \geq 0 \\
|\langle x, y\rangle| & \leq 0
\end{aligned}
$$

which means $\langle x, y\rangle=0$. Hence, x and y are orthogonal.
5. (a) Suppose T is anti-self-adjoint. Then we have

$$
T^{*} T=-T^{2}=T T^{*}
$$

So, we see that T is normal. Moreover, if v is an eigenvector of T corresponding eigenvalue λ. Then we have

$$
\lambda\langle v, v\rangle=\langle T v, v\rangle=\left\langle v, T^{*} v\right\rangle=\langle v,-T v\rangle=-\bar{\lambda}\langle v, v\rangle .
$$

So, we see that λ is purely imaginary.
Conversely, if T is normal and all of its eigenvalues are purely imaginary. Then there exists an orthonormal basis β for V consisting of eigenvectors of T. Note that $[T]_{\beta}$ is a diagonal matrix with purely imaginary diagonal entries. So, we have

$$
\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}=-[T]_{\beta}=[-T]_{\beta} .
$$

Hence, $T^{*}=-T$ and T is anti-self-adjoint.
(b) Consider the characteristic polynomial of T and all its complex roots. Note that if α is a root, then $\bar{\alpha}$ is also a root. Since the number of roots is odd, there is some root satisfying $\alpha=\bar{\alpha}$. In other words, there is at least one real eigenvalue λ and $v \neq 0$ such that $T v=\lambda v$. Now, T is anti-self-adjoint, we have $T^{*}=-T$ and

$$
\lambda\langle v, v\rangle=\langle T v, v\rangle=\left\langle v, T^{*} v\right\rangle=\langle v,-T v\rangle=-\lambda\langle v, v\rangle,
$$

which means $\lambda=0$. In other words, there is a nontrivial v satisfying $T v=0$. Hence, the dimension of the kernel of T is greater than 0.
6. To show that W is not a subspace of $\mathcal{L}(V)$, we find some elements from W such that their sum is outside W.

As $\operatorname{dim}(V) \geq 2$, we can find two orthonormal vectors, say v_{1} and v_{2}. Consider the projection P_{1} of vectors onto $\operatorname{span}\left(\left\{v_{1}\right\}\right)$ and the projection P_{2} of vectors onto $\operatorname{span}\left(\left\{v_{1}+v_{2}\right\}\right)$. Note that P_{1} and P_{2} are orthogonal projections, so they are self-adjoint. In particular, they are normal, so $P_{1}, P_{2} \in W$. Consider P_{1} and P_{2} in W, we show that $P_{1}+i P_{2} \notin W$.

$$
\begin{aligned}
& \left(P_{1}+i P_{2}\right)^{*}\left(P_{1}+i P_{2}\right)-\left(P_{1}+i P_{2}\right)\left(P_{1}+i P_{2}\right)^{*} \\
= & \left(P_{1}^{*}-i P_{2}^{*}\right)\left(P_{1}^{*}+i P_{2}^{*}\right)-\left(P_{1}^{*}+i P_{2}^{*}\right)\left(P_{1}^{*}-i P_{2}^{*}\right) \\
= & \left(P_{1}-i P_{2}\right)\left(P_{1}+i P_{2}\right)-\left(P_{1}+i P_{2}\right)\left(P_{1}-i P_{2}\right) \\
= & 2 i\left(P_{1} P_{2}-P_{2} P_{1}\right)
\end{aligned}
$$

But $P_{1} P_{2}-P_{2} P_{1} \neq 0$ as

$$
\left(P_{1} P_{2}-P_{2} P_{1}\right)\left(v_{2}\right)=P_{1} P_{2}\left(v_{2}\right)=P_{1}\left(\frac{v_{1}+v_{2}}{2}\right)=\frac{v_{1}}{2} \neq 0 .
$$

This shows that $P_{1}+i P_{2}$ is not normal and $P_{1}+i P_{2} \notin W$. Hence, W is not a subspace of $\mathcal{L}(V)$.

