Solution to Midterm 1

1. (a) Consider the characteristic polynomial of A.

$$
\operatorname{det}(A-t I)=\left(\frac{\sqrt{3}}{2}-t\right)^{2}+\frac{1}{4}
$$

Obviously, the above polynomial does not split over \mathbb{R}, we see that A is not diagonalizable over \mathbb{R}.
(b) However, the characteristic polynomial of A does split over \mathbb{C}. Moreover, we have two distinct eigenvalues of A. Hence, A is diagonalizable over \mathbb{C}.
(c) From the above, see that the eigenvalues of A are $\frac{\sqrt{3}-i}{2}$ and $\frac{\sqrt{3}+i}{2}$. As A is diagonalizable over \mathbb{C}, there is some invertible matrix $Q \in$ $M_{2 \times 2}(\mathbb{C})$ such that

$$
A=Q\left(\begin{array}{cc}
\frac{\sqrt{3}-i}{2} & 0 \\
0 & \frac{\sqrt{3}+i}{2}
\end{array}\right) Q^{-1}
$$

So we have the following.

$$
A^{k}=Q\left(\begin{array}{cc}
\left(\frac{\sqrt{3}-i}{2}\right)^{k} & 0 \\
0 & \left(\frac{\sqrt{3}+i}{2}\right)^{k}
\end{array}\right) Q^{-1}
$$

Using the fact that $\left(\frac{\sqrt{3} \pm i}{2}\right)^{3}= \pm i$, we see that the smallest positive integer $k \in \mathbb{N}$ is 12 .

$$
A^{12}=Q\left(\begin{array}{cc}
\left(\frac{\sqrt{3}-i}{2}\right)^{12} & 0 \\
0 & \left(\frac{\sqrt{3}+i}{2}\right)^{12}
\end{array}\right) Q^{-1}=Q I Q^{-1}=I
$$

2. (a) Note that

$$
P=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)\right\}
$$

So we may choose $\left\{\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 1\end{array}\right)\right\}$ as a basis.
(b) Observe that $\left(\begin{array}{c}2 \\ -1 \\ 2\end{array}\right)$ is the normal vector to the plane $2 x-y+2 z=0$. Denote

$$
v_{1}=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right), \quad v_{2}=\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right), \quad v_{3}=\left(\begin{array}{c}
2 \\
-1 \\
2
\end{array}\right)
$$

So we may choose $\gamma=\left\{v_{1}, v_{2}, v_{3}\right\}$ as a basis for \mathbb{R}^{3}. As T is the reflection about the plane P, one can easily check that γ is actually a basis consisting of eigenvectors of T.

$$
T\left(v_{1}\right)=v_{1}, \quad T\left(v_{2}\right)=v_{2}, \quad T\left(v_{3}\right)=-v_{3}
$$

Hence, T is diagonalizable.
(c) Using

$$
[T]_{\beta}=[I]_{\gamma}^{\beta}[T]_{\gamma}[I]_{\beta}^{\gamma},
$$

with $[I]_{\gamma}^{\beta}=\left(\begin{array}{ccc}1 & 0 & 2 \\ 2 & 2 & -1 \\ 0 & 1 & 2\end{array}\right)$ and $[I]_{\beta}^{\gamma}=\left([I]_{\gamma}^{\beta}\right)^{-1}$, we have

$$
[T]_{\beta}=\frac{1}{9}\left(\begin{array}{ccc}
1 & 4 & -8 \\
4 & 7 & 4 \\
-8 & 4 & 1
\end{array}\right)
$$

3. Let

$$
w_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad w_{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad w_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and $\beta=\left\{w_{1}, w_{2}, w_{3}\right\}$. Note that β is a basis for W and we have

$$
T\left(w_{1}\right)=w_{1}+2 w_{3}, \quad T\left(w_{2}\right)=2 w_{1}+w_{2}, \quad T\left(w_{3}\right)=2 w_{2}+w_{3} .
$$

So we see that

$$
[T]_{\beta}=\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 2 \\
2 & 0 & 1
\end{array}\right)
$$

(a) Let $f(t)$ be the characteristic polynomial of T.

$$
f(t)=\operatorname{det}\left([T]_{\beta}-t I\right)=-t^{3}+3 t^{2}-3 t+9
$$

(b) By Cayley-Hamilton Theorem, we have $f(T)=0$.

$$
f(T)=-T^{3}+3 T^{2}-3 T+9 I=0
$$

After rearranging the above, we have

$$
I=\frac{1}{9} T\left(T^{2}-3 T+3 I\right)=\frac{1}{9}\left(T^{2}-3 T+3 I\right) T
$$

Hence, we see that T is invertible and $T^{-1}=T^{2}-3 T+3 I$.
4. Let W be the T-cyclic subspace of V generated by v. As $T^{2} v=-v$, we see that $W=\operatorname{span}\{v, T v\}$. Note that v and $T v$ are linearly independent (otherwise we have $T v=c v$ and $c^{2}=-1$, which is not possible over \mathbb{R}). So $\beta=\{v, T v\}$ is a basis for W. Consider T_{W}, we have

$$
\left[T_{W}\right]_{\beta}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and the characteristic polynomial of T_{W}, say $f_{W}(t)$, is

$$
f_{W}(t)=\operatorname{det}\left(\left[T_{W}\right]_{\beta}-t I\right)=t^{2}+1
$$

As $f_{W}(t)$ does not split over \mathbb{R}, the characteristic polynomial of T, say $f(t)$, does not split over \mathbb{R} too (since $f_{W}(t)$ is a factor of $f(t)$), which means T is not diagonalizable over \mathbb{R}.
5. Suppose A has n distinct positive real eigenvalues, say $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Note that the characteristic polynomial of A splits and λ_{i} are distinct.

$$
f(t)=\left(\lambda_{1}-t\right)\left(\lambda_{2}-t\right) \cdots\left(\lambda_{n}-t\right)
$$

Hence, A is diagonalizable. Then there exists invertible matrix Q and diagonal matrix

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

such that $A=Q D Q^{-1}$. As λ_{i} are positive, we can choose

$$
C=\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right)
$$

and $C^{2}=D$. So we can let $B=Q C Q^{-1}$ and we have

$$
B^{2}=Q C Q^{-1} Q C Q^{-1}=Q C^{2} Q^{-1}=Q D Q^{-1}
$$

6. Obviously, we have $W \subset V$. We want to show $V \subset W$. For any $v \in V$, there exists $v_{1} \in V$ and $w_{1} \in W$ such that

$$
v=w_{1}+T\left(v_{1}\right)+T^{2}\left(v_{1}\right) .
$$

Again for this $v_{1} \in V$, there exists $v_{2} \in V$ and $w_{2} \in W$ such that $v_{1}=$ $w_{2}+T\left(v_{2}\right)+T^{2}\left(v_{2}\right)$. So we have

$$
\begin{aligned}
v & =w_{1}+T\left(w_{2}+T\left(v_{2}\right)+T^{2}\left(v_{2}\right)\right)+T^{2}\left(w_{2}+T\left(v_{2}\right)+T^{2}\left(v_{2}\right)\right) \\
& =w_{1}+\left(T+T^{2}\right)\left(w_{2}\right)+\left(T^{2}+2 T^{3}+T^{4}\right)\left(v_{2}\right)
\end{aligned}
$$

Repeat this process n times, we will get

$$
v=w_{1}+f(T)\left(w_{n}\right)+g(T)\left(v_{n}\right),
$$

where $f(T)$ and $g(T)$ are polynomials of T. In particular, $g(T)$ consists of terms $a_{j} T^{j}$ with $n \leq j \leq 2 n$, so $g(T)$ is the zero transformation on V. As W is T-invariant, $f(T)\left(w_{n}\right) \in W$, so $v=w_{1}+f(T)\left(w_{n}\right)+g(T)\left(v_{n}\right) \in W$.

