
Solution to Homework 10

Sec. 6.5

2. (c) Consider the characteristic polynomial of A =

(
2 3− 3i

3 + 3i 5

)
.

det(A− λI) = (2− λ)(5− λ)− (3− 3i)(3 + 3i) = λ2 − 7λ− 8

By solving det(A− λI) = 0, we have λ = −1 or λ = 8.

For λ = −1, we have

N(A+ I) = span({(−1 + i, 1)t}).

For λ = 8, we have

N(A− 8I) = span({(1, 1 + i)t}).

By normalizing the two directions, we have

P =
1√
3

(
−1 + i 1

1 1 + i

)
, D =

(
−1 0
8 0

)
.

4. Note that [T ]β =
(
z
)
, where β is the standard basis for C1 (orthonormal).

Then we have [T∗]β =
(
z
)

and T ∗z = Tz. In other words, T ∗z (u) = zu.
Hence, we see that Tz is always normal, self-adjoint when z is real, and
unitary when |z| = 1.

5. (c) Consider the characteristic polynomial of the matrix on the left, one
can easily check that 1 and ±i are the eigenvalues. While for the
matrix on the right, the eigenvalues are, obviously, −1, 0 and 2.
Hence, They are not unitarily equivalent.

7. Suppose T is unitary. There exists an orthonormal basis β such that T (β)
is an orthonormal basis for V . In other words, we have

[T ]β =


λ1 0 · · · 0
0 λ2 0
...

. . . 0
0 · · · 0 λn

 ,
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where |λi| = 1. Then, by defining µi such that µ2
i = λi, we have |µi| = 1.

Let

D =


µ1 0 · · · 0
0 µ2 0
...

. . . 0
0 · · · 0 µn


and define U such that [U ]β = D. Then we see that U2 = T and U is a
unitary operator.

9. Consider V = R2 and U : V → V with U(a, b) = (a + b, 0). Let β =
{(1, 0), (0, 1)} be an orthonormal basis for V . Then we see that

‖U(1, 0)‖ = ‖U(0, 1)‖ = ‖(1, 0)‖ = ‖(0, 1)‖ = 1.

However, ‖U(1, 1)‖ = 2 6=
√

2 = ‖(1, 1)‖. Hence, we see that U may not
be unitary.

13. Consider A =

(
1 −1
0 0

)
and B =

(
1 0
0 0

)
. So, A and B are similar.

(
1 0
0 0

)
=

(
1 1
0 1

)−1(
1 −1
0 0

)(
1 1
0 1

)
But they are not unitarily equivalent as A is symmetric while B is not.

15. (a) Since U is unitary, we have ‖UW (x)‖ = ‖U(x)‖ = ‖x‖. This means
that UW is injective. AsW is of finite dimension, UW is also surjective
by considering the rank and nullity. Hence, U(W ) = W .

(b) Note that V = W ⊕W⊥ and U(x) ∈ V . For any x ∈W⊥,

U(x) = w + y

for some w ∈ W and y ∈ W⊥. To show that W⊥ is U -invariant,
we need to show w = 0. From (a), we see that UW is surjective, so
there is some v ∈ W such that U(v) = w. As U is unitary, we have
‖v‖ = ‖w‖. Similarly, we have

‖x‖2 = ‖U(x)‖2 = ‖w + y‖2 = ‖w‖2 + ‖y‖2 ,

where the last equality is by the orthogonality of w and y. Besides,
we get U(x+ v) = 2w + y and

‖x‖2 + ‖v‖2 = ‖x+ v‖2 = ‖2w + y‖2 = 4 ‖w‖2 + ‖y‖2 .

Then one can easily solve that ‖w‖2 = 0, which means w = 0.
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16. Let {ei}∞i=1 be an orthonormal basis for V . Consider an operator U defined
by  U(e1) = e2

U(e2i+1) = e2i−1 for i ≥ 1
U(e2i) = e2i+2 for i ≥ 1

One can easily check that U is unitary.

‖U(x)‖ =

∞∑
i=1

αi = ‖x‖ , where x =

∞∑
i=1

αiei

Then for the subspace W = span({e2, e4, e6, . . . }), we see that W is U -
invariant. However, W⊥ is not U -invariant as U(e1) = e2 6∈W⊥.

Sec. 6.6

4. Suppose T is the orthogonal projection of V on W . Then we have

R(T )⊥ = N(T ), N(T )⊥ = R(T )

and R(T ) = W . If we have R(I −T ) = N(T ) and N(I −T ) = R(T ), then
R(I − T )⊥ = N(I − T ) and N(I − T )⊥ = R(I − T ), which means I − T
is an orthogonal projection. With T = T 2, we have the following.

For any (I − T )(x) ∈ R(I − T ), we have

T (I − T )(x) = T (x)− T 2(x) = T (x)− T (x) = 0,

so (I − T )(x) ∈ N(T ). If x ∈ N(T ), then we have

x = (I − T )(x) ∈ R(I − T ).

Hence, R(I − T ) = N(T ).

For any x ∈ N(I − T ), we have (I − T )(x) = 0, which means

x = T (x) ∈ R(T ).

If T (x) ∈ R(T ), then we have

(I − T )(T (x)) = T (x)− T 2(x) = T (x)− T (x) = 0,

so T (x) ∈ N(I − T ). Hence, N(I − T ) = R(T ).

With the above, we have the following.

R(I − T )⊥ = N(T )⊥ = R(T ) = N(I − T )

N(I − T )⊥ = R(T )⊥ = N(T ) = R(I − T )

In other words, I − T is an orthogonal projection. Moreover, we have
R(I − T ) = N(T ) = R(T )⊥ = W⊥, so I − T is the orthogonal projection
of V on W⊥.
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6. Let T be a projection of a finite-dimensional inner product space. We need
to show that R(T )⊥ = N(T ) and N(T )⊥ = R(T ). For any x ∈ R(T )⊥,
we have

〈T (x), T (x)〉 = 〈x, T ∗(T (x))〉 = 〈x, T (T ∗(x))〉 = 0,

which means T (x) = 0 and x ∈ N(T ). If x ∈ N(T ), then T (x) = 0, which
means x is an eigenvector of T with respect to eigenvalue 0. Since T is
normal, x is an eigenvector of T ∗ with respect to eigenvalue 0, too. Then
for any T (y) ∈ R(T ), we have

〈x, T (y)〉 = 〈T ∗(x), y〉 = 0.

Hence, R(T )⊥ = N(T ). Since the space is of finite dimension, we have

N(T )⊥ =
(
R(T )⊥

)⊥
= R(T ).

Thus, T is an orthogonal projection.

7. (a) Using the fact that TiTj = δijTj , we have

g(T ) = g

(
k∑
i=1

λiTi

)

=
∑
j

αj

(
k∑
i=1

λiTi

)j

=
∑
j

αj

(
k∑
i=1

λjiTi

)

=

k∑
i=1

∑
j

αjλ
j
i

Ti =

k∑
i=1

g(λi)Ti.

(b) Similarly, by TiTj = δijTj , we have

T0 = Tn =

k∑
i=1

λni Ti.

For any eigenvector vi with respect to eigenvalue λi, we have

0 = T0(vi) = Tn(vi) =

(
k∑
i=1

λni Ti

)
(vi) = λni vi,

which means λi = 0. Since this is true for all i, we have

T =

k∑
i=1

λiTi = T0.
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(c) Suppose U commutes with each Ti. Then we have

UT = U

(
k∑
i=1

λiTi

)

=

k∑
i=1

λiUTi

=

k∑
i=1

λiTiU

=

(
k∑
i=1

λiTi

)
U = TU

Conversely, suppose U commutes with T . Note that for each Ti, there
exists some polynomial gi such that gi(T ) = Ti. Then we have

UTi = Ugi(T ) = gi(T )U = TiU.

(d) Note that TiTj = δijTj and T =
∑k
i=1 λiTi. Let

U =

k∑
i=1

λ
1
2
i Ti.

Then one can easily check that U2 = T . Since Ti are self-adjoint,
that is Ti is normal, thus U is normal, too.

(e) Note that V is finite-dimensional. So T is invertible if and only if
N(T ) = 0. But this means 0 is not an eigenvalue of T .

(f) Suppose T is a projection of V on W along W⊥. Let λ be eigenvalue
and v ∈ V be the corresponding eigenvector. Then there is some
w ∈W and y ∈W⊥ such that v = w + y. So, we have

w = T (w + y) = λ(w + y)

(1− λ)w = λy.

This means that λ can only be 1 or 0.

(g) Suppose T = −T ∗. Note that if λi is an eigenvalue of T , then λi
will be an eigenvalue of T ∗. Let vi be the eigenvector with respect
to eigenvalue λi. It follows that

λivi = Tvi = −T ∗vi = −λivi,

which means every λi is an imaginary number. Conversely, if every λi
is an imaginary number, then λi = −λi. Note that Ti is self-adjoint.
Then we have

T ∗ =

(
k∑
i=1

λiTi

)∗
=

k∑
i=1

λiT
∗
i =

k∑
i=1

(−λi)Ti = −T,

which means T = −T ∗.
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10. We prove the statement by induction on the dimension of V , n = dim(V ).

When n = 1, the statement is trivial. Now suppose the statement holds
for n ≤ k − 1, we consider n = k.

Pick an arbitrary eigenspace W = Eλ of T with respect to some eigenvalue
λ. Obviously, W is T -invariant. Note that W is also U -invariant as U(w)
is an eigenvector of T with respect to eigenvalue λ.

TU(w) = UT (w) = λU(w)

If W = V , by Theorem 6.17, as U is self-adjoint, we may find an or-
thonormal basis β for V consisting of eigenvectors of U . But β are also
orthonormal eigenvectors of T , so the result follows.

On the other hand, if W is a proper subspace of V , we may find β in
following way.

Note that TW and UW are normal by Exercise 7 and 8 of Section 6.4.
Using the induction hypothesis, we may choose an orthonormal basis β1
for W consisting of eigenvectors of TW and UW , which are eigenvectors of
T and U too.

Similarly, we see that W⊥ is T ∗-invariant and U∗-invariant. But T and U
are normal, so W⊥ is T -invariant and U -invariant. Again, by the induction
hypothesis, we may choose an orthonormal basis β2 for W⊥ consisting of
eigenvectors of T and U .

Let β = β1∪β2. As V is of finite dimension, we see that β is a basis for V
consisting of eigenvectors of T and U . Hence, the statement is also true
for n = k.
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