Solution to Homework 10

Sec. 6.5

2. (c) Consider the characteristic polynomial of $A=\left(\begin{array}{cc}2 & 3-3 i \\ 3+3 i & 5\end{array}\right)$.

$$
\operatorname{det}(A-\lambda I)=(2-\lambda)(5-\lambda)-(3-3 i)(3+3 i)=\lambda^{2}-7 \lambda-8
$$

By solving $\operatorname{det}(A-\lambda I)=0$, we have $\lambda=-1$ or $\lambda=8$.
For $\lambda=-1$, we have

$$
N(A+I)=\operatorname{span}\left(\left\{(-1+i, 1)^{t}\right\}\right)
$$

For $\lambda=8$, we have

$$
N(A-8 I)=\operatorname{span}\left(\left\{(1,1+i)^{t}\right\}\right)
$$

By normalizing the two directions, we have

$$
P=\frac{1}{\sqrt{3}}\left(\begin{array}{cc}
-1+i & 1 \\
1 & 1+i
\end{array}\right), \quad D=\left(\begin{array}{cc}
-1 & 0 \\
8 & 0
\end{array}\right)
$$

4. Note that $[T]_{\beta}=(z)$, where β is the standard basis for \mathbb{C}^{1} (orthonormal). Then we have $[T *]_{\beta}=(\bar{z})$ and $T_{z}^{*}=T_{\bar{z}}$. In other words, $T_{z}^{*}(u)=\bar{z} u$. Hence, we see that T_{z} is always normal, self-adjoint when z is real, and unitary when $|z|=1$.
5. (c) Consider the characteristic polynomial of the matrix on the left, one can easily check that 1 and $\pm i$ are the eigenvalues. While for the matrix on the right, the eigenvalues are, obviously, $-1,0$ and 2. Hence, They are not unitarily equivalent.
6. Suppose T is unitary. There exists an orthonormal basis β such that $T(\beta)$ is an orthonormal basis for V. In other words, we have

$$
[T]_{\beta}=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & & 0 \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \lambda_{n}
\end{array}\right)
$$

where $\left|\lambda_{i}\right|=1$. Then, by defining μ_{i} such that $\mu_{i}^{2}=\lambda_{i}$, we have $\left|\mu_{i}\right|=1$. Let

$$
D=\left(\begin{array}{cccc}
\mu_{1} & 0 & \cdots & 0 \\
0 & \mu_{2} & & 0 \\
\vdots & & \ddots & 0 \\
0 & \cdots & 0 & \mu_{n}
\end{array}\right)
$$

and define U such that $[U]_{\beta}=D$. Then we see that $U^{2}=T$ and U is a unitary operator.
9. Consider $V=\mathbb{R}^{2}$ and $U: V \rightarrow V$ with $U(a, b)=(a+b, 0)$. Let $\beta=$ $\{(1,0),(0,1)\}$ be an orthonormal basis for V. Then we see that

$$
\|U(1,0)\|=\|U(0,1)\|=\|(1,0)\|=\|(0,1)\|=1
$$

However, $\|U(1,1)\|=2 \neq \sqrt{2}=\|(1,1)\|$. Hence, we see that U may not be unitary.
13. Consider $A=\left(\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right)$ and $B=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. So, A and B are similar.

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)^{-1}\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

But they are not unitarily equivalent as A is symmetric while B is not.
15. (a) Since U is unitary, we have $\left\|U_{W}(x)\right\|=\|U(x)\|=\|x\|$. This means that U_{W} is injective. As W is of finite dimension, U_{W} is also surjective by considering the rank and nullity. Hence, $U(W)=W$.
(b) Note that $V=W \oplus W^{\perp}$ and $U(x) \in V$. For any $x \in W^{\perp}$,

$$
U(x)=w+y
$$

for some $w \in W$ and $y \in W^{\perp}$. To show that W^{\perp} is U-invariant, we need to show $w=0$. From (a), we see that U_{W} is surjective, so there is some $v \in W$ such that $U(v)=w$. As U is unitary, we have $\|v\|=\|w\|$. Similarly, we have

$$
\|x\|^{2}=\|U(x)\|^{2}=\|w+y\|^{2}=\|w\|^{2}+\|y\|^{2},
$$

where the last equality is by the orthogonality of w and y. Besides, we get $U(x+v)=2 w+y$ and

$$
\|x\|^{2}+\|v\|^{2}=\|x+v\|^{2}=\|2 w+y\|^{2}=4\|w\|^{2}+\|y\|^{2}
$$

Then one can easily solve that $\|w\|^{2}=0$, which means $w=0$.
16. Let $\left\{e_{i}\right\}_{i=1}^{\infty}$ be an orthonormal basis for V. Consider an operator U defined by

$$
\left\{\begin{array}{cl}
U\left(e_{1}\right)=e_{2} & \\
U\left(e_{2 i+1}\right)=e_{2 i-1} & \text { for } i \geq 1 \\
U\left(e_{2 i}\right)=e_{2 i+2} & \text { for } i \geq 1
\end{array}\right.
$$

One can easily check that U is unitary.

$$
\|U(x)\|=\sum_{i=1}^{\infty} \alpha_{i}=\|x\|, \text { where } x=\sum_{i=1}^{\infty} \alpha_{i} e_{i}
$$

Then for the subspace $W=\operatorname{span}\left(\left\{e_{2}, e_{4}, e_{6}, \ldots\right\}\right)$, we see that W is U invariant. However, W^{\perp} is not U-invariant as $U\left(e_{1}\right)=e_{2} \notin W^{\perp}$.

Sec. 6.6

4. Suppose T is the orthogonal projection of V on W. Then we have

$$
R(T)^{\perp}=N(T), \quad N(T)^{\perp}=R(T)
$$

and $R(T)=W$. If we have $R(I-T)=N(T)$ and $N(I-T)=R(T)$, then $R(I-T)^{\perp}=N(I-T)$ and $N(I-T)^{\perp}=R(I-T)$, which means $I-T$ is an orthogonal projection. With $T=T^{2}$, we have the following.
For any $(I-T)(x) \in R(I-T)$, we have

$$
T(I-T)(x)=T(x)-T^{2}(x)=T(x)-T(x)=0
$$

so $(I-T)(x) \in N(T)$. If $x \in N(T)$, then we have

$$
x=(I-T)(x) \in R(I-T)
$$

Hence, $R(I-T)=N(T)$.
For any $x \in N(I-T)$, we have $(I-T)(x)=0$, which means

$$
x=T(x) \in R(T) .
$$

If $T(x) \in R(T)$, then we have

$$
(I-T)(T(x))=T(x)-T^{2}(x)=T(x)-T(x)=0
$$

so $T(x) \in N(I-T)$. Hence, $N(I-T)=R(T)$.
With the above, we have the following.

$$
\begin{aligned}
& R(I-T)^{\perp}=N(T)^{\perp}=R(T)=N(I-T) \\
& N(I-T)^{\perp}=R(T)^{\perp}=N(T)=R(I-T)
\end{aligned}
$$

In other words, $I-T$ is an orthogonal projection. Moreover, we have $R(I-T)=N(T)=R(T)^{\perp}=W^{\perp}$, so $I-T$ is the orthogonal projection of V on W^{\perp}.
6. Let T be a projection of a finite-dimensional inner product space. We need to show that $R(T)^{\perp}=N(T)$ and $N(T)^{\perp}=R(T)$. For any $x \in R(T)^{\perp}$, we have

$$
\langle T(x), T(x)\rangle=\left\langle x, T^{*}(T(x))\right\rangle=\left\langle x, T\left(T^{*}(x)\right)\right\rangle=0
$$

which means $T(x)=0$ and $x \in N(T)$. If $x \in N(T)$, then $T(x)=0$, which means x is an eigenvector of T with respect to eigenvalue 0 . Since T is normal, x is an eigenvector of T^{*} with respect to eigenvalue 0 , too. Then for any $T(y) \in R(T)$, we have

$$
\langle x, T(y)\rangle=\left\langle T^{*}(x), y\right\rangle=0
$$

Hence, $R(T)^{\perp}=N(T)$. Since the space is of finite dimension, we have

$$
N(T)^{\perp}=\left(R(T)^{\perp}\right)^{\perp}=R(T)
$$

Thus, T is an orthogonal projection.
7. (a) Using the fact that $T_{i} T_{j}=\delta_{i j} T_{j}$, we have

$$
\begin{aligned}
g(T) & =g\left(\sum_{i=1}^{k} \lambda_{i} T_{i}\right) \\
& =\sum_{j} \alpha_{j}\left(\sum_{i=1}^{k} \lambda_{i} T_{i}\right)^{j} \\
& =\sum_{j} \alpha_{j}\left(\sum_{i=1}^{k} \lambda_{i}^{j} T_{i}\right) \\
& =\sum_{i=1}^{k}\left(\sum_{j} \alpha_{j} \lambda_{i}^{j}\right) T_{i}=\sum_{i=1}^{k} g\left(\lambda_{i}\right) T_{i} .
\end{aligned}
$$

(b) Similarly, by $T_{i} T_{j}=\delta_{i j} T_{j}$, we have

$$
T_{0}=T^{n}=\sum_{i=1}^{k} \lambda_{i}^{n} T_{i}
$$

For any eigenvector v_{i} with respect to eigenvalue λ_{i}, we have

$$
0=T_{0}\left(v_{i}\right)=T^{n}\left(v_{i}\right)=\left(\sum_{i=1}^{k} \lambda_{i}^{n} T_{i}\right)\left(v_{i}\right)=\lambda_{i}^{n} v_{i}
$$

which means $\lambda_{i}=0$. Since this is true for all i, we have

$$
T=\sum_{i=1}^{k} \lambda_{i} T_{i}=T_{0}
$$

(c) Suppose U commutes with each T_{i}. Then we have

$$
\begin{aligned}
U T & =U\left(\sum_{i=1}^{k} \lambda_{i} T_{i}\right) \\
& =\sum_{i=1}^{k} \lambda_{i} U T_{i} \\
& =\sum_{i=1}^{k} \lambda_{i} T_{i} U \\
& =\left(\sum_{i=1}^{k} \lambda_{i} T_{i}\right) U=T U
\end{aligned}
$$

Conversely, suppose U commutes with T. Note that for each T_{i}, there exists some polynomial g_{i} such that $g_{i}(T)=T_{i}$. Then we have

$$
U T_{i}=U g_{i}(T)=g_{i}(T) U=T_{i} U
$$

(d) Note that $T_{i} T_{j}=\delta_{i j} T_{j}$ and $T=\sum_{i=1}^{k} \lambda_{i} T_{i}$. Let

$$
U=\sum_{i=1}^{k} \lambda_{i}^{\frac{1}{2}} T_{i}
$$

Then one can easily check that $U^{2}=T$. Since T_{i} are self-adjoint, that is T_{i} is normal, thus U is normal, too.
(e) Note that V is finite-dimensional. So T is invertible if and only if $N(T)=0$. But this means 0 is not an eigenvalue of T.
(f) Suppose T is a projection of V on W along W^{\perp}. Let λ be eigenvalue and $v \in V$ be the corresponding eigenvector. Then there is some $w \in W$ and $y \in W^{\perp}$ such that $v=w+y$. So, we have

$$
\begin{aligned}
w=T(w+y) & =\lambda(w+y) \\
\quad(1-\lambda) w & =\lambda y
\end{aligned}
$$

This means that λ can only be 1 or 0 .
(g) Suppose $T=-T^{*}$. Note that if λ_{i} is an eigenvalue of T, then $\overline{\lambda_{i}}$ will be an eigenvalue of T^{*}. Let v_{i} be the eigenvector with respect to eigenvalue λ_{i}. It follows that

$$
\lambda_{i} v_{i}=T v_{i}=-T^{*} v_{i}=-\overline{\lambda_{i}} v_{i}
$$

which means every λ_{i} is an imaginary number. Conversely, if every λ_{i} is an imaginary number, then $\overline{\lambda_{i}}=-\lambda_{i}$. Note that T_{i} is self-adjoint. Then we have

$$
T^{*}=\left(\sum_{i=1}^{k} \lambda_{i} T_{i}\right)^{*}=\sum_{i=1}^{k} \overline{\lambda_{i}} T_{i}^{*}=\sum_{i=1}^{k}\left(-\lambda_{i}\right) T_{i}=-T,
$$

which means $T=-T^{*}$.
10. We prove the statement by induction on the dimension of $V, n=\operatorname{dim}(V)$. When $n=1$, the statement is trivial. Now suppose the statement holds for $n \leq k-1$, we consider $n=k$.
Pick an arbitrary eigenspace $W=E_{\lambda}$ of T with respect to some eigenvalue λ. Obviously, W is T-invariant. Note that W is also U-invariant as $U(w)$ is an eigenvector of T with respect to eigenvalue λ.

$$
T U(w)=U T(w)=\lambda U(w)
$$

If $W=V$, by Theorem 6.17, as U is self-adjoint, we may find an orthonormal basis β for V consisting of eigenvectors of U. But β are also orthonormal eigenvectors of T, so the result follows.
On the other hand, if W is a proper subspace of V, we may find β in following way.
Note that T_{W} and U_{W} are normal by Exercise 7 and 8 of Section 6.4. Using the induction hypothesis, we may choose an orthonormal basis β_{1} for W consisting of eigenvectors of T_{W} and U_{W}, which are eigenvectors of T and U too.
Similarly, we see that W^{\perp} is T^{*}-invariant and U^{*}-invariant. But T and U are normal, so W^{\perp} is T-invariant and U-invariant. Again, by the induction hypothesis, we may choose an orthonormal basis β_{2} for W^{\perp} consisting of eigenvectors of T and U.
Let $\beta=\beta_{1} \cup \beta_{2}$. As V is of finite dimension, we see that β is a basis for V consisting of eigenvectors of T and U. Hence, the statement is also true for $n=k$.

