Solution to Homework 9

Sec. 6.3

12. (a) For any $x \in R(T^*)^{\perp}$, we have $\langle x, T^*(y) \rangle = 0$ for all $y \in V$. Then we have

$$\langle T(x), y \rangle = \langle x, T^*(y) \rangle = 0$$

for all $y \in V$. In other words, we have T(x) = 0 and $x \in N(T)$. Conversely, for any $x \in N(T)$, we have

$$\langle x, T^*(y) \rangle = \langle T(x), y \rangle = \langle 0, y \rangle = 0$$

for any $y \in V$. So we have $x \in R(T^*)^{\perp}$.

(b) By Exercise 13 (c) of Section 6.2, one can show that $W = (W^{\perp})^{\perp}$ for any finite-dimensional subspace W. Then we have

$$R(T^*) = (R(T^*)^{\perp})^{\perp} = N(T)^{\perp}.$$

14. First, we show that T is linear. For any $x_1, x_2 \in V$ and $c \in \mathbb{F}$, we have

$$T(x_1 + cx_2) = \langle x_1 + cx_2, y \rangle z$$
$$= \langle x_1, y \rangle z + c \langle x_2, y \rangle z$$
$$= T(x_1) + cT(x_2)$$

So T is a linear operator on V and T^* exists. For any $v \in V$, we have

$$\begin{aligned} \langle x, T^*(v) \rangle &= \langle T(x), v \rangle \\ &= \langle \langle x, y \rangle \, z, v \rangle \\ &= \langle x, y \rangle \, \langle z, v \rangle \\ &= \left\langle x, \overline{\langle z, v \rangle y} \right\rangle \\ &= \langle x, \langle v, z \rangle \, y \rangle \end{aligned}$$

Since this is true for any $x \in V$, we have $T^*(v) = \langle v, z \rangle y$.

Sec. 6.4

2. (c) Let β be the standard basis. Then we have the following.

$$[T]_{\beta} = \begin{pmatrix} 2 & i \\ 1 & 2 \end{pmatrix}$$

It is easy to check that T is normal but not self-adjoint. So we can obtain an orthonormal basis of eigenvectors of T for V.

$$\left\{ \begin{pmatrix} \frac{1}{\sqrt{2}} \\ -\frac{1}{2} + \frac{1}{2}i \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{2} - \frac{1}{2}i \end{pmatrix} \right\}$$

(d) By orthogonalizing the standard basis, we obtain an orthonormal basis for $P_2(\mathbb{R})$.

$$\beta = \left\{1, \sqrt{3}(2t-1), \sqrt{6}(6t^2 - 6t + 1)\right\}$$

Then we have the following.

$$[T]_{\beta} = \begin{pmatrix} 0 & 2\sqrt{3} & 0\\ 0 & 0 & 6\sqrt{2}\\ 0 & 0 & 0 \end{pmatrix}$$

So we see that T is neither normal nor self-adjoint.

4. Suppose T and U are self-adjoint operators. Note that

$$(TU)^* = U^*T^* = UT.$$

So it is easy to see that TU is self-adjoint if and only if TU = UT.

7. (a) Note that W is a subspace of V. Suppose T is a self-adjoint linear operator on V. For any $x, y \in W$, we have the following.

$$\langle x, (T_W)^*(y) \rangle = \langle T_W(x), y \rangle$$

= $\langle T(x), y \rangle$
= $\langle T^*(x), y \rangle$
= $\langle x, T(y) \rangle$
= $\langle x, T_W(y) \rangle$

So T_W is self-adjoint.

(b) We want to show that for any $y \in W^{\perp}$, we have $T^*(y) \in W^{\perp}$. To show that, note that W is T-invariant. Consider any $x \in W$, we have $T(x) \in W$. Then for any $y \in W^{\perp}$, we have the following.

$$\langle x, T^*(y) \rangle = \langle T(x), y \rangle = 0$$

In other words, $T^*(y) \in W^{\perp}$ and W^{\perp} is T^* -invariant.

(c) We want to show that $(T_W)^*(y) = (T^*)_W(y)$ for any $y \in W$.

$$\langle x, (T_W)^*(y) \rangle = \langle T_W(x), y \rangle$$

= $\langle T(x), y \rangle$
= $\langle x, T^*(y) \rangle$
= $\langle x, (T^*)_W(y) \rangle$

Since this is true for any $x \in W$, the result follows.

(d) From the above part, we see that $(T_W)^* = (T^*)_W$. As T is normal, we have $TT^* = T^*T$. Then we have the following.

$$T_W(T_W)^* = T_W(T^*)_W$$

= $(TT^*)_W$
= $(T^*T)_W$
= $(T^*)_W T_W$
= $(T_W)^* T_W$

Hence, we see that T_W is normal.

8. Since T is normal, we see that T is diagonalizable. Suppose W is T-invariant, then, by Exercise 24 of Section 5.4, T_W is also diagonalizable. Then consider a basis for W consisting of eigenvectors of T.

But these eigenvectors of T are also eigenvectors of T^* as T is normal. In other words, we have a basis for W consisting of eigenvectors of T^* , which means W is also T^* -invariant.

9. By Theorem 6.15 (a), we have $||T(x)|| = ||T^*(x)||$ for all $x \in V$, which means that T(x) = 0 if and only if $T^*(x) = 0$. Hence, we see that

$$N(T) = N(T^*).$$

By Exercise 12 of Section 6.2, we have $R(T^*) = N(T)^{\perp}$. Hence, the result follows.

$$R(T^*) = N(T)^{\perp} = N(T^*)^{\perp} = R(T)$$

10. Suppose T is self-adjoint, so $T^* = T$.

$$\begin{aligned} |T(x) \pm ix||^2 &= \langle T(x) \pm ix, T(x) \pm ix \rangle \\ &= ||T(x)||^2 \pm \langle T(x), ix \rangle \pm \langle ix, T(x) \rangle + ||x||^2 \\ &= ||T(x)||^2 \pm \overline{i} \langle T(x), x \rangle \pm i \langle T^*(x), x \rangle + ||x||^2 \\ &= ||T(x)||^2 \mp i \langle T(x), x \rangle \pm i \langle T(x), x \rangle + ||x||^2 \\ &= ||T(x)||^2 + ||x||^2 \end{aligned}$$

From the equality, we see that ||T(x) - x|| = 0 if and only if T(x) = 0 and x = 0. So T - iI is injective. T - iI is also surjective as V is of finite

dimension. Hence, T - iI is invertible. Similarly, we also have T + iI to be invertible.

To check that $\left[(T - iI)^{-1}\right]^* = (T + iI)^{-1}$, we have the following.

$$\left\langle x, \left[(T-iI)^{-1} \right]^* (T+iI)(y) \right\rangle = \left\langle (T-iI)^{-1}(x), (T+iI)(y) \right\rangle$$
$$= \left\langle (T-iI)^{-1}(x), (T^*+iI)(y) \right\rangle$$
$$= \left\langle (T-iI)^{-1}(x), (T-iI)^*(y) \right\rangle$$
$$= \left\langle (T-iI)(T-iI)^{-1}(x), y \right\rangle$$
$$= \left\langle x, y \right\rangle$$

As x is arbitrary, we see that $[(T - iI)^{-1}]^* (T + iI) = I$. Hence, the result follows.

12. Since the characteristic polynomial of T splits, by Schur's Theorem, there exists an orthonormal basis $\beta = \{v_1, v_2, \ldots, v_n\}$ such that $[T]_{\beta}$ is upper triangular.

We want to show that β is an orthonormal basis consisting of eigenvectors of T. Let $[T]_{\beta} = (A_{i,j})$, where $(A_{i,j})$ is upper triangular.

Note that $T(v_1) = A_{1,1}v_1$, so v_1 is an eigenvector of T. Suppose t is the largest integer such that v_1, v_2, \ldots, v_t are all eigenvectors with respect to eigenvalues λ_i .

If t = n, then our claim is done. Suppose not, we see that

$$T(v_{t+1}) = \sum_{i=1}^{t+1} A_{i,t+1} v_i.$$

Note that v_i are eigenvectors of T^* with respect to eigenvalues $\overline{\lambda_i}$ and v_i are orthogonal to each other. For $i = 1, 2, \ldots, t$, we have the following.

$$A_{i,t+1} = \langle T(v_{t+1}), v_i \rangle = \langle v_{t+1}, T^*(v_i) \rangle = \langle v_{t+1}, \lambda_i v_i \rangle = 0$$

So we have v_{t+1} to be an eigenvector of T too.

But this is a contradiction, so we must have t = n. In other words, β is a basis for V consisting of eigenvectors of T By Theorem 6.17, T is self-adjoint.

14. Suppose U and T are self-adjoint operators on V such that UT = TU. We prove the statement by induction on the dimension n of V.

When n = 1, the statement is trivial. Now suppose the statement holds for $n \le k - 1$, we consider n = k.

Pick an arbitrary eigenspace $W = E_{\lambda}$ of T with respect to some eigenvalue λ . Obviously, W is T-invariant. Note that W is also U-invariant as U(w) is an eigenvector of T with respect to eigenvalue λ .

$$TU(w) = UT(w) = \lambda U(w)$$

If W = V, by Theorem 6.17, as U is self-adjoint, we may find an orthonormal basis β for V consisting of eigenvectors of U. But β are also eigenvectors of T, so the result follows.

On the other hand, if W is a proper subspace of V, we may find β in following way.

Note that T_W and U_W are self-adjoint by Exercise 7 (a) of Section 6.4. Using the induction hypothesis, we may choose an orthonormal basis β_1 for W consisting of eigenvectors of T_W and U_W , which are eigenvectors of T and U too.

Also, by Exercise 7 (b) of Section 6.4, we see that W^{\perp} is T^* -invariant and U^* -invariant. But T and U are self-adjoint, so W^{\perp} is T-invariant and U-invariant. Again, by the induction hypothesis, we may choose an orthonormal basis β_2 for W^{\perp} consisting of eigenvectors of T and U.

Let $\beta = \beta_1 \cup \beta_2$. As V is of finite dimension, we see that β is a basis for V consisting of eigenvectors of T and U. Hence, the statement is also true for n = k.