Solution to Homework 9

Sec. 6.3

12. (a) For any $x \in R\left(T^{*}\right)^{\perp}$, we have $\left\langle x, T^{*}(y)\right\rangle=0$ for all $y \in V$. Then we have

$$
\langle T(x), y\rangle=\left\langle x, T^{*}(y)\right\rangle=0
$$

for all $y \in V$. In other words, we have $T(x)=0$ and $x \in N(T)$. Conversely, for any $x \in N(T)$, we have

$$
\left\langle x, T^{*}(y)\right\rangle=\langle T(x), y\rangle=\langle 0, y\rangle=0
$$

for any $y \in V$. So we have $x \in R\left(T^{*}\right)^{\perp}$.
(b) By Exercise 13 (c) of Section 6.2, one can show that $W=\left(W^{\perp}\right)^{\perp}$ for any finite-dimensional subspace W. Then we have

$$
R\left(T^{*}\right)=\left(R\left(T^{*}\right)^{\perp}\right)^{\perp}=N(T)^{\perp}
$$

14. First, we show that T is linear. For any $x_{1}, x_{2} \in V$ and $c \in \mathbb{F}$, we have

$$
\begin{aligned}
T\left(x_{1}+c x_{2}\right) & =\left\langle x_{1}+c x_{2}, y\right\rangle z \\
& =\left\langle x_{1}, y\right\rangle z+c\left\langle x_{2}, y\right\rangle z \\
& =T\left(x_{1}\right)+c T\left(x_{2}\right)
\end{aligned}
$$

So T is a linear operator on V and T^{*} exists. For any $v \in V$, we have

$$
\begin{aligned}
\left\langle x, T^{*}(v)\right\rangle & =\langle T(x), v\rangle \\
& =\langle\langle x, y\rangle z, v\rangle \\
& =\langle x, y\rangle\langle z, v\rangle \\
& =\langle x, \overline{\langle z, v\rangle} y\rangle \\
& =\langle x,\langle v, z\rangle y\rangle
\end{aligned}
$$

Since this is true for any $x \in V$, we have $T^{*}(v)=\langle v, z\rangle y$.

Sec. 6.4

2. (c) Let β be the standard basis. Then we have the following.

$$
[T]_{\beta}=\left(\begin{array}{ll}
2 & i \\
1 & 2
\end{array}\right)
$$

It is easy to check that T is normal but not self-adjoint. So we can obtain an orthonormal basis of eigenvectors of T for V.

$$
\left\{\binom{\frac{1}{\sqrt{2}}}{-\frac{1}{2}+\frac{1}{2} i},\binom{\frac{1}{\sqrt{2}}}{\frac{1}{2}-\frac{1}{2} i}\right\}
$$

(d) By orthogonalizing the standard basis, we obtain an orthonormal basis for $P_{2}(\mathbb{R})$.

$$
\beta=\left\{1, \sqrt{3}(2 t-1), \sqrt{6}\left(6 t^{2}-6 t+1\right)\right\}
$$

Then we have the following.

$$
[T]_{\beta}=\left(\begin{array}{ccc}
0 & 2 \sqrt{3} & 0 \\
0 & 0 & 6 \sqrt{2} \\
0 & 0 & 0
\end{array}\right)
$$

So we see that T is neither normal nor self-adjoint.
4. Suppose T and U are self-adjoint operators. Note that

$$
(T U)^{*}=U^{*} T^{*}=U T
$$

So it is easy to see that $T U$ is self-adjoint if and only if $T U=U T$.
7. (a) Note that W is a subspace of V. Suppose T is a self-adjoint linear operator on V. For any $x, y \in W$, we have the following.

$$
\begin{aligned}
\left\langle x,\left(T_{W}\right)^{*}(y)\right\rangle & =\left\langle T_{W}(x), y\right\rangle \\
& =\langle T(x), y\rangle \\
& =\left\langle T^{*}(x), y\right\rangle \\
& =\langle x, T(y)\rangle \\
& =\left\langle x, T_{W}(y)\right\rangle
\end{aligned}
$$

So T_{W} is self-adjoint.
(b) We want to show that for any $y \in W^{\perp}$, we have $T^{*}(y) \in W^{\perp}$. To show that, note that W is T-invariant. Consider any $x \in W$, we have $T(x) \in W$. Then for any $y \in W^{\perp}$, we have the following.

$$
\left\langle x, T^{*}(y)\right\rangle=\langle T(x), y\rangle=0
$$

In other words, $T^{*}(y) \in W^{\perp}$ and W^{\perp} is T^{*}-invariant.
(c) We want to show that $\left(T_{W}\right)^{*}(y)=\left(T^{*}\right)_{W}(y)$ for any $y \in W$.

$$
\begin{aligned}
\left\langle x,\left(T_{W}\right)^{*}(y)\right\rangle & =\left\langle T_{W}(x), y\right\rangle \\
& =\langle T(x), y\rangle \\
& =\left\langle x, T^{*}(y)\right\rangle \\
& =\left\langle x,\left(T^{*}\right)_{W}(y)\right\rangle
\end{aligned}
$$

Since this is true for any $x \in W$, the result follows.
(d) From the above part, we see that $\left(T_{W}\right)^{*}=\left(T^{*}\right)_{W}$. As T is normal, we have $T T^{*}=T^{*} T$. Then we have the following.

$$
\begin{aligned}
T_{W}\left(T_{W}\right)^{*} & =T_{W}\left(T^{*}\right)_{W} \\
& =\left(T T^{*}\right)_{W} \\
& =\left(T^{*} T\right)_{W} \\
& =\left(T^{*}\right)_{W} T_{W} \\
& =\left(T_{W}\right)^{*} T_{W}
\end{aligned}
$$

Hence, we see that T_{W} is normal.
8. Since T is normal, we see that T is diagonalizable. Suppose W is T invariant, then, by Exercise 24 of Section 5.4, T_{W} is also diagonalizable. Then consider a basis for W consisting of eigenvectors of T.
But these eigenvectors of T are also eigenvectors of T^{*} as T is normal. In other words, we have a basis for W consisting of eigenvectors of T^{*}, which means W is also T^{*}-invariant.
9. By Theorem 6.15 (a), we have $\|T(x)\|=\left\|T^{*}(x)\right\|$ for all $x \in V$, which means that $T(x)=0$ if and only if $T^{*}(x)=0$. Hence, we see that

$$
N(T)=N\left(T^{*}\right)
$$

By Exercise 12 of Section 6.2, we have $R\left(T^{*}\right)=N(T)^{\perp}$. Hence, the result follows.

$$
R\left(T^{*}\right)=N(T)^{\perp}=N\left(T^{*}\right)^{\perp}=R(T)
$$

10. Suppose T is self-adjoint, so $T^{*}=T$.

$$
\begin{aligned}
\|T(x) \pm i x\|^{2} & =\langle T(x) \pm i x, T(x) \pm i x\rangle \\
& =\|T(x)\|^{2} \pm\langle T(x), i x\rangle \pm\langle i x, T(x)\rangle+\|x\|^{2} \\
& =\|T(x)\|^{2} \pm \bar{i}\langle T(x), x\rangle \pm i\left\langle T^{*}(x), x\right\rangle+\|x\|^{2} \\
& =\|T(x)\|^{2} \mp i\langle T(x), x\rangle \pm i\langle T(x), x\rangle+\|x\|^{2} \\
& =\|T(x)\|^{2}+\|x\|^{2}
\end{aligned}
$$

From the equality, we see that $\|T(x)-x\|=0$ if and only if $T(x)=0$ and $x=0$. So $T-i I$ is injective. $T-i I$ is also surjective as V is of finite
dimension. Hence, $T-i I$ is invertible. Similarly, we also have $T+i I$ to be invertible.
To check that $\left[(T-i I)^{-1}\right]^{*}=(T+i I)^{-1}$, we have the following.

$$
\begin{aligned}
\left\langle x,\left[(T-i I)^{-1}\right]^{*}(T+i I)(y)\right\rangle & =\left\langle(T-i I)^{-1}(x),(T+i I)(y)\right\rangle \\
& =\left\langle(T-i I)^{-1}(x),\left(T^{*}+i I\right)(y)\right\rangle \\
& =\left\langle(T-i I)^{-1}(x),(T-i I)^{*}(y)\right\rangle \\
& =\left\langle(T-i I)(T-i I)^{-1}(x), y\right\rangle \\
& =\langle x, y\rangle
\end{aligned}
$$

As x is arbitrary, we see that $\left[(T-i I)^{-1}\right]^{*}(T+i I)=I$. Hence, the result follows.
12. Since the characteristic polynomial of T splits, by Schur's Theorem, there exists an orthonormal basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $[T]_{\beta}$ is upper triangular.
We want to show that β is an orthonormal basis consisting of eigenvectors of T. Let $[T]_{\beta}=\left(A_{i, j}\right)$, where $\left(A_{i, j}\right)$ is upper triangular.
Note that $T\left(v_{1}\right)=A_{1,1} v_{1}$, so v_{1} is an eigenvector of T. Suppose t is the largest integer such that $v_{1}, v_{2}, \ldots, v_{t}$ are all eigenvectors with respect to eigenvalues λ_{i}.
If $t=n$, then our claim is done. Suppose not, we see that

$$
T\left(v_{t+1}\right)=\sum_{i=1}^{t+1} A_{i, t+1} v_{i}
$$

Note that v_{i} are eigenvectors of T^{*} with respect to eigenvalues $\overline{\lambda_{i}}$ and v_{i} are orthogonal to each other. For $i=1,2, \ldots, t$, we have the following.

$$
A_{i, t+1}=\left\langle T\left(v_{t+1}\right), v_{i}\right\rangle=\left\langle v_{t+1}, T^{*}\left(v_{i}\right)\right\rangle=\left\langle v_{t+1}, \overline{\lambda_{i}} v_{i}\right\rangle=0
$$

So we have v_{t+1} to be an eigenvector of T too.
But this is a contradiction, so we must have $t=n$. In other words, β is a basis for V consisting of eigenvectors of T By Theorem $6.17, T$ is self-adjoint.
14. Suppose U and T are self-adjoint operators on V such that $U T=T U$. We prove the statement by induction on the dimension n of V.
When $n=1$, the statement is trivial. Now suppose the statement holds for $n \leq k-1$, we consider $n=k$.
Pick an arbitrary eigenspace $W=E_{\lambda}$ of T with respect to some eigenvalue λ. Obviously, W is T-invariant. Note that W is also U-invariant as $U(w)$ is an eigenvector of T with respect to eigenvalue λ.

$$
T U(w)=U T(w)=\lambda U(w)
$$

If $W=V$, by Theorem 6.17, as U is self-adjoint, we may find an orthonormal basis β for V consisting of eigenvectors of U. But β are also eigenvectors of T, so the result follows.
On the other hand, if W is a proper subspace of V, we may find β in following way.
Note that T_{W} and U_{W} are self-adjoint by Exercise 7 (a) of Section 6.4. Using the induction hypothesis, we may choose an orthonormal basis β_{1} for W consisting of eigenvectors of T_{W} and U_{W}, which are eigenvectors of T and U too.
Also, by Exercise 7 (b) of Section 6.4, we see that W^{\perp} is T^{*}-invariant and U^{*}-invariant. But T and U are self-adjoint, so W^{\perp} is T-invariant and U-invariant. Again, by the induction hypothesis, we may choose an orthonormal basis β_{2} for W^{\perp} consisting of eigenvectors of T and U.
Let $\beta=\beta_{1} \cup \beta_{2}$. As V is of finite dimension, we see that β is a basis for V consisting of eigenvectors of T and U. Hence, the statement is also true for $n=k$.

