## Solution to Homework 8

## Sec. 6.2

17. Note that  $\langle T(x), y \rangle = 0$  for any  $y \in V$ , so we have T(x) = 0. But x is arbitrary, so  $T = T_0$ .

Suppose  $\beta = \{v_1, v_2, \dots, v_n\}$  is a basis for V and

$$\langle T(v_i), v_j \rangle = 0$$

for  $1 \leq i, j \leq n$ . Note that x and y can be expressed as linear combinations of  $v_i$ s. By the linearity of T and the inner product  $\langle \cdot, \cdot \rangle$ , one can easily show that

$$\langle T(x), y \rangle = 0$$

for all  $x, y \in V$ . Hence, by the above argument, we have  $T = T_0$ .

18. We show that  $W_e^{\perp} \subset W_o$  and  $W_e^{\perp} \supset W_o$ .

For any  $h \in W_e^{\perp}$ , we decompose h into f and g in this way.

$$f(t) = \frac{1}{2} (h(t) + h(-t))$$
$$g(t) = \frac{1}{2} (h(t) - h(-t))$$

Obviously, h = f + g and one can check that f is an even function, while g is an odd function. By assumption, we have  $\langle h, f \rangle = 0$  as  $f \in W_e$ , which means

$$0 = \langle f + g, f \rangle = \langle f, f \rangle + \langle g, f \rangle = ||f||^2$$

because  $\langle g, f \rangle = \int_{-1}^{1} f(t)g(t)dt = 0$  as f(t)g(t) is an even function. Hence, we have  $h = f + g = g \in W_o$  and  $W_e^{\perp} \subset W_o$ .

On the other hand, for any  $k \in W_o$ , we have

$$\langle k, f \rangle = \int_{-1}^{1} k(t) f(t) dt = 0$$

for any  $f \in W_e$  as k(t)f(t) is an even function. Hence, we have  $k \in W_e^{\perp}$  and  $W_e^{\perp} \supset W_o$ .

## Sec. 6.3

2. (b) Let  $\beta = \{v_1, v_2\}$  be the standard basis for  $\mathbb{C}^2$ . Obviously,  $\beta$  is an orthonormal basis. Then we have

$$y = \sum_{i=1}^{2} \overline{g(v_i)} v_i = \begin{pmatrix} 1\\ -2 \end{pmatrix}$$

3. (b) Let  $z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} \in \mathbb{C}^2$ . Consider  $\langle z, T^*(x) \rangle$ , we have the following.

$$\langle z, T^*(x) \rangle = \langle T(z), x \rangle$$

$$= \left\langle \begin{pmatrix} 2z_1 + iz_2 \\ (1-i)z_1 \end{pmatrix}, \begin{pmatrix} 3-i \\ 1+2i \end{pmatrix} \right\rangle$$

$$= (5-i)z_1 + (-1+3i)z_2$$

Hence, we see that  $T^*(x) = \begin{pmatrix} 5+i\\ -1-3i \end{pmatrix}$ . (c) Similarly, let  $g(t) = at + b \in P_1(\mathbb{R})$ .

$$\begin{split} \langle g, T^*(f) \rangle &= \langle T(g), f \rangle \\ &= \langle a + 3(at+b), 4 - 2t \rangle \\ &= \int_{-1}^1 \left( -6at^2 + (10a - 6b)t + 4(a+3b) \right) dt \\ &= 4a + 24b \end{split}$$

By letting  $T^*(f) = ct + d$ .

$$\langle g, T^*(f) \rangle = \int_{-1}^{1} (at+b)(ct+d)dt = \frac{2}{3}ac+2bd$$

We see that c = 6 and d = 12. Hence,  $T^*(f) = 6t + 12$ .

6. Obviously, we have

$$U_1^* = (T + T^*)^* = T^* + (T^*)^* = T + T^* = U_1$$

and

$$U_2^* = (TT^*)^* = (T^*)^*T^* = TT^* = U_2.$$

8. Note that T is invertible, so  $T^{-1}$  exists.

$$T^*(T^{-1})^* = (T^{-1}T)^* = I^* = I$$
  
 $(T^{-1})^*T^* = (TT^{-1})^* = I^* = I$ 

Hence,  $T^*$  is invertible and  $(T^*)^{-1} = (T^{-1})^*$ 

9. Suppose W is finite-dimensional subspace of V and  $V = W \oplus W^{\perp}$ . For any  $x, y \in V$ , we have  $x = x_1 + x_2$  and  $y = y_1 + y_2$ , where  $x_1, y_1 \in W$  and  $x_2, y_2 \in W^{\perp}$ . So we have  $\langle x_1, y_2 \rangle = 0 = \langle x_2, y_1 \rangle$ . We want to show that  $T(x) = T^*(x)$  for all  $x \in V$ .

$$\langle T^*(x), y \rangle = \langle x, T(y) \rangle$$
  
=  $\langle x_1 + x_2, y_1 \rangle$   
=  $\langle x_1, y_1 \rangle$ 

Similarly, we have the following.

$$\langle T(x), y \rangle = \langle x_1, y_1 + y_2 \rangle$$
  
=  $\langle x_1, y_1 \rangle$   
=  $\langle T^*(x), y \rangle$ 

Since the above holds for any  $y \in V$  and x is arbitrary, we see that  $T = T^*$ .

10. Note that from Exercise 20 in Sec. 6.1, we have the following.

$$\langle x, y \rangle = \frac{1}{4} \|x + y\|^2 - \frac{1}{4} \|x - y\|^2 \text{ if } \mathbb{F} = \mathbb{R}$$
$$\langle x, y \rangle = \frac{1}{4} \sum_{k=1}^4 i^k \|x + i^k y\|^2 \text{ if } \mathbb{F} = \mathbb{C}$$

Now if ||T(x)|| = ||x|| for all  $x \in V$ . For  $\mathbb{F} = \mathbb{R}$ , we have the following.

$$\begin{aligned} \langle T(x), T(y) \rangle &= \frac{1}{4} \|T(x) + T(y)\|^2 - \frac{1}{4} \|T(x) - T(y)\|^2 \\ &= \frac{1}{4} \|T(x+y)\|^2 - \frac{1}{4} \|T(x-y)\|^2 \\ &= \frac{1}{4} \|x+y\|^2 - \frac{1}{4} \|x-y\|^2 \\ &= \langle x, y \rangle \end{aligned}$$

Similarly, for  $\mathbb{F} = \mathbb{C}$ , we have the following.

$$\langle T(x), T(y) \rangle = \frac{1}{4} \sum_{k=1}^{4} i^k \left\| T(x) + i^k T(y) \right\|^2$$

$$= \frac{1}{4} \sum_{k=1}^{4} i^k \left\| T(x+i^k y) \right\|^2$$

$$= \frac{1}{4} \sum_{k=1}^{4} i^k \left\| x + i^k y \right\|^2$$

$$= \langle x, y \rangle$$

If  $\langle T(x), T(y) \rangle = \langle x, y \rangle$ , we simply take y = x and the result follows.

13. (a) Obviously, if  $x \in N(T)$ , we have

$$T^*T(x) = T^*(0) = 0.$$

So  $x \in N(T^*T)$ . Conversely, if  $x \in N(T^*T)$ , we have

$$\left\|T(x)\right\|^{2} = \langle T(x), T(x) \rangle = \langle x, T^{*}T(x) \rangle = \langle x, 0 \rangle = 0$$

So T(x) = 0 and  $x \in N(T)$ . Note that  $T^*T$  is also a linear operator on V and V is of finite dimension. By the dimension of rank and nullity, we see that  $\operatorname{rank}(T^*T) = \operatorname{rank}(T)$ .

(b) First, we show that  $\operatorname{rank}(A^*) = \operatorname{rank}(A)$ . Note that  $\operatorname{rank}(A^t) = \operatorname{rank}(A)$  as the dimension of column space equals that of row space. Also, we have  $\operatorname{rank}(\overline{A}) = \operatorname{rank}(A)$  as  $\{v_1, v_2, \ldots, v_n\}$  are linearly independent if and only if  $\{\overline{v_1}, \overline{v_2}, \ldots, \overline{v_n}\}$  are linearly independent.

$$\sum b_i \overline{v_i} = \sum \overline{a_i v_i} = \overline{\sum a_i v_i}$$
, with  $a_i = \overline{b_i}$ 

As  $A^* = \overline{A^t}$ , we have rank $(A^*) = \operatorname{rank}(A)$ . Then we have

$$\operatorname{rank}([T]_{\beta}^{*}) = \operatorname{rank}([T]_{\beta}).$$

But  $[T^*]_{\beta} = [T]^*_{\beta}$ , so we have

$$\operatorname{rank}([T^*]_{\beta}) = \operatorname{rank}([T]_{\beta}).$$

In other words,  $\operatorname{rank}(T^*) = \operatorname{rank}(T)$ . Using (a), we have  $\operatorname{rank}(TT^*) = \operatorname{rank}(T^*)$  by considering  $T^*$  instead of T. By the above argument, we have

 $\operatorname{rank}(TT^*) = \operatorname{rank}(T^*) = \operatorname{rank}(T).$ 

(c) From (a) and (b), we have the following.

$$\operatorname{rank}(L_A(L_A)^*) = \operatorname{rank}((L_A)^*L_A) = \operatorname{rank}(L_A)$$

Using the fact that  $L_{A^*} = (L_A)^*$  and  $L_A L_B = L_{AB}$ , we have the result.

$$\operatorname{rank}(L_{AA^*}) = \operatorname{rank}(L_{A^*A}) = \operatorname{rank}(L_A)$$
$$\operatorname{rank}(AA^*) = \operatorname{rank}(A^*A) = \operatorname{rank}(A)$$

15. (a) Note for a fixed  $y \in W$ , we may regard  $\langle T(x), y \rangle_2$  as a linear transformation from V to  $\mathbb{F}$ . Then there is a unique  $z \in V$  such that

$$\langle T(x), y \rangle_2 = \langle x, z \rangle_1$$

for all  $x \in V$ . We may define  $T^*(y) = z$ . As  $z \in V$  exists and is unique for any given  $y \in W$ , we see that  $T^* : W \to V$  is well-defined. Hence, we now have

$$\langle T(x), y \rangle_2 = \langle x, T^*(y) \rangle_1$$

for any  $x \in V$  and  $y \in W$ . If there is a transformation  $U: W \to V$  satisfying the same condition, we have

$$\langle x, U(y) \rangle_1 = \langle T(x), y \rangle_2 = \langle x, T^*(y) \rangle_1$$

for any  $x \in V$  and  $y \in W$ , which means  $U = T^*$ . To check the linearity of  $T^*$ , we have the following.

$$\begin{aligned} \langle x, T^*(y+cz) \rangle_1 &= \langle T(x), y+cz \rangle_2 \\ &= \langle T(x), y \rangle_2 + \overline{c} \, \langle T(x), z \rangle_2 \\ &= \langle x, T^*(y) \rangle_2 + \overline{c} \, \langle x, T^*(z) \rangle_2 \\ &= \langle x, T^*(y) + cT^*(z) \rangle_1 \end{aligned}$$

Since x is arbitrary, we have  $T^*(y + cz) = T^*(y) + cT^*(z)$ .

(b) Let  $\beta = \{v_1, v_2, \ldots, v_n\}$  and  $\gamma = \{w_1, w_2, \ldots, w_m\}$  be orthonormal bases for V and W respectively. Consider  $T(v_j)$  and  $T^*(w_j)$ , we have the following.

$$T(v_j) = \sum_{i=1}^{m} a_{ij} w_i, \quad T^*(w_j) = \sum_{i=1}^{n} b_{ij} v_i$$

Note that  $[T]_{\beta}^{\gamma} = (a_{ij})$  and  $[T^*]_{\gamma}^{\beta} = (b_{ij})$  Now that  $\langle x, T^*(y) \rangle_1 = \langle T(x), y \rangle_2$ , we have the following.

$$\overline{b_{ji}} = \langle v_j, T^*(w_i) \rangle_1 = \langle T(v_j), w_i \rangle_2 = a_{ij}$$

Hence, we see that  $[T^*]^{\beta}_{\gamma} = ([T]^{\gamma}_{\beta})^*$ 

(c) Again we have

$$\operatorname{rank}([T^*]^{\beta}_{\gamma}) = \operatorname{rank}(([T]^{\gamma}_{\beta})^*) = \operatorname{rank}([T]^{\gamma}_{\beta})$$

Hence, we have  $\operatorname{rank}(T^*) = \operatorname{rank}(T)$ .

(d) Using the fact that  $\langle a, b \rangle = \overline{\langle b, a \rangle}$  and the property of adjoint.

$$\langle T^*(x),y\rangle_1=\overline{\langle y,T^*(x)\rangle}_1=\overline{\langle T(y),x\rangle}_2=\langle x,T(y)\rangle_2$$

(e) Obviously, if T(x) = 0, we have  $T^*T(x) = T^*(0) = 0$ . Conversely, if  $T^*T(x) = 0$ , consider

$$||T(x)||^{2} = \langle T(x), T(x) \rangle_{2} = \langle x, T^{*}T(x) \rangle_{1} = 0$$

and, hence, we have T(x) = 0.