Solution to Homework 8

Sec. 6.2

17. Note that $\langle T(x), y\rangle=0$ for any $y \in V$, so we have $T(x)=0$. But x is arbitrary, so $T=T_{0}$.
Suppose $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is a basis for V and

$$
\left\langle T\left(v_{i}\right), v_{j}\right\rangle=0
$$

for $1 \leq i, j \leq n$. Note that x and y can be expressed as linear combinations of v_{i} s. By the linearity of T and the inner product $\langle\cdot, \cdot\rangle$, one can easily show that

$$
\langle T(x), y\rangle=0
$$

for all $x, y \in V$. Hence, by the above argument, we have $T=T_{0}$.
18. We show that $W_{e}^{\perp} \subset W_{o}$ and $W_{e}^{\perp} \supset W_{o}$.

For any $h \in W_{e}^{\perp}$, we decompose h into f and g in this way.

$$
\begin{aligned}
& f(t)=\frac{1}{2}(h(t)+h(-t)) \\
& g(t)=\frac{1}{2}(h(t)-h(-t))
\end{aligned}
$$

Obviously, $h=f+g$ and one can check that f is an even function, while g is an odd function. By assumption, we have $\langle h, f\rangle=0$ as $f \in W_{e}$, which means

$$
0=\langle f+g, f\rangle=\langle f, f\rangle+\langle g, f\rangle=\|f\|^{2}
$$

because $\langle g, f\rangle=\int_{-1}^{1} f(t) g(t) d t=0$ as $f(t) g(t)$ is an even function. Hence, we have $h=f+g=g \in W_{o}$ and $W_{e}^{\perp} \subset W_{o}$.
On the other hand, for any $k \in W_{o}$, we have

$$
\langle k, f\rangle=\int_{-1}^{1} k(t) f(t) d t=0
$$

for any $f \in W_{e}$ as $k(t) f(t)$ is an even function. Hence, we have $k \in W_{e}^{\perp}$ and $W_{e}^{\perp} \supset W_{o}$.

Sec. 6.3

2. (b) Let $\beta=\left\{v_{1}, v_{2}\right\}$ be the standard basis for \mathbb{C}^{2}. Obviously, β is an orthonormal basis. Then we have

$$
y=\sum_{i=1}^{2} \overline{g\left(v_{i}\right)} v_{i}=\binom{1}{-2} .
$$

3. (b) Let $z=\binom{z_{1}}{z_{2}} \in \mathbb{C}^{2}$. Consider $\left\langle z, T^{*}(x)\right\rangle$, we have the following.

$$
\begin{aligned}
\left\langle z, T^{*}(x)\right\rangle & =\langle T(z), x\rangle \\
& =\left\langle\binom{ 2 z_{1}+i z_{2}}{(1-i) z_{1}},\binom{3-i}{1+2 i}\right\rangle \\
& =(5-i) z_{1}+(-1+3 i) z_{2}
\end{aligned}
$$

Hence, we see that $T^{*}(x)=\binom{5+i}{-1-3 i}$.
(c) Similarly, let $g(t)=a t+b \in P_{1}(\mathbb{R})$.

$$
\begin{aligned}
\left\langle g, T^{*}(f)\right\rangle & =\langle T(g), f\rangle \\
& =\langle a+3(a t+b), 4-2 t\rangle \\
& =\int_{-1}^{1}\left(-6 a t^{2}+(10 a-6 b) t+4(a+3 b)\right) d t \\
& =4 a+24 b
\end{aligned}
$$

By letting $T^{*}(f)=c t+d$.

$$
\left\langle g, T^{*}(f)\right\rangle=\int_{-1}^{1}(a t+b)(c t+d) d t=\frac{2}{3} a c+2 b d
$$

We see that $c=6$ and $d=12$. Hence, $T^{*}(f)=6 t+12$.
6. Obviously, we have

$$
U_{1}^{*}=\left(T+T^{*}\right)^{*}=T^{*}+\left(T^{*}\right)^{*}=T+T^{*}=U_{1}
$$

and

$$
U_{2}^{*}=\left(T T^{*}\right)^{*}=\left(T^{*}\right)^{*} T^{*}=T T^{*}=U_{2} .
$$

8. Note that T is invertible, so T^{-1} exists.

$$
\begin{aligned}
& T^{*}\left(T^{-1}\right)^{*}=\left(T^{-1} T\right)^{*}=I^{*}=I \\
& \left(T^{-1}\right)^{*} T^{*}=\left(T T^{-1}\right)^{*}=I^{*}=I
\end{aligned}
$$

Hence, $T *$ is invertible and $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$
9. Suppose W is finite-dimensional subspace of V and $V=W \oplus W^{\perp}$. For any $x, y \in V$, we have $x=x_{1}+x_{2}$ and $y=y_{1}+y_{2}$, where $x_{1}, y_{1} \in W$ and $x_{2}, y_{2} \in W^{\perp}$. So we have $\left\langle x_{1}, y_{2}\right\rangle=0=\left\langle x_{2}, y_{1}\right\rangle$. We want to show that $T(x)=T^{*}(x)$ for all $x \in V$.

$$
\begin{aligned}
\left\langle T^{*}(x), y\right\rangle & =\langle x, T(y)\rangle \\
& =\left\langle x_{1}+x_{2}, y_{1}\right\rangle \\
& =\left\langle x_{1}, y_{1}\right\rangle
\end{aligned}
$$

Similarly, we have the following.

$$
\begin{aligned}
\langle T(x), y\rangle & =\left\langle x_{1}, y_{1}+y_{2}\right\rangle \\
& =\left\langle x_{1}, y_{1}\right\rangle \\
& =\left\langle T^{*}(x), y\right\rangle
\end{aligned}
$$

Since the above holds for any $y \in V$ and x is arbitrary, we see that $T=T^{*}$.
10. Note that from Exercise 20 in Sec. 6.1, we have the following.

$$
\begin{gathered}
\langle x, y\rangle=\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2} \text { if } \mathbb{F}=\mathbb{R} \\
\langle x, y\rangle=\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|x+i^{k} y\right\|^{2} \text { if } \mathbb{F}=\mathbb{C}
\end{gathered}
$$

Now if $\|T(x)\|=\|x\|$ for all $x \in V$. For $\mathbb{F}=\mathbb{R}$, we have the following.

$$
\begin{aligned}
\langle T(x), T(y)\rangle & =\frac{1}{4}\|T(x)+T(y)\|^{2}-\frac{1}{4}\|T(x)-T(y)\|^{2} \\
& =\frac{1}{4}\|T(x+y)\|^{2}-\frac{1}{4}\|T(x-y)\|^{2} \\
& =\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2} \\
& =\langle x, y\rangle
\end{aligned}
$$

Similarly, for $\mathbb{F}=\mathbb{C}$, we have the following.

$$
\begin{aligned}
\langle T(x), T(y)\rangle & =\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|T(x)+i^{k} T(y)\right\|^{2} \\
& =\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|T\left(x+i^{k} y\right)\right\|^{2} \\
& =\frac{1}{4} \sum_{k=1}^{4} i^{k}\left\|x+i^{k} y\right\|^{2} \\
& =\langle x, y\rangle
\end{aligned}
$$

If $\langle T(x), T(y)\rangle=\langle x, y\rangle$, we simply take $y=x$ and the result follows.
13. (a) Obviously, if $x \in N(T)$, we have

$$
T^{*} T(x)=T^{*}(0)=0 .
$$

So $x \in N\left(T^{*} T\right)$. Conversely, if $x \in N\left(T^{*} T\right)$, we have

$$
\|T(x)\|^{2}=\langle T(x), T(x)\rangle=\left\langle x, T^{*} T(x)\right\rangle=\langle x, 0\rangle=0
$$

So $T(x)=0$ and $x \in N(T)$. Note that $T^{*} T$ is also a linear operator on V and V is of finite dimension. By the dimension of rank and nullity, we see that $\operatorname{rank}\left(T^{*} T\right)=\operatorname{rank}(T)$.
(b) First, we show that $\operatorname{rank}\left(A^{*}\right)=\operatorname{rank}(A)$. Note that $\operatorname{rank}\left(A^{t}\right)=$ $\operatorname{rank}(A)$ as the dimension of column space equals that of row space. Also, we have $\operatorname{rank}(\bar{A})=\operatorname{rank}(A)$ as $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ are linearly independent if and only if $\left\{\overline{v_{1}}, \overline{v_{2}}, \ldots, \overline{v_{n}}\right\}$ are linearly independent.

$$
\sum b_{i} \overline{v_{i}}=\sum \overline{a_{i} v_{i}}=\overline{\sum a_{i} v_{i}}, \text { with } a_{i}=\overline{b_{i}}
$$

As $A^{*}=\overline{A^{t}}$, we have $\operatorname{rank}\left(A^{*}\right)=\operatorname{rank}(A)$. Then we have

$$
\operatorname{rank}\left([T]_{\beta}^{*}\right)=\operatorname{rank}\left([T]_{\beta}\right) .
$$

But $\left[T^{*}\right]_{\beta}=[T]_{\beta}^{*}$, so we have

$$
\operatorname{rank}\left(\left[T^{*}\right]_{\beta}\right)=\operatorname{rank}\left([T]_{\beta}\right)
$$

In other words, $\operatorname{rank}\left(T^{*}\right)=\operatorname{rank}(T)$.
Using (a), we have $\operatorname{rank}\left(T T^{*}\right)=\operatorname{rank}\left(T^{*}\right)$ by considering T^{*} instead of T. By the above argument, we have

$$
\operatorname{rank}\left(T T^{*}\right)=\operatorname{rank}\left(T^{*}\right)=\operatorname{rank}(T)
$$

(c) From (a) and (b), we have the following.

$$
\operatorname{rank}\left(L_{A}\left(L_{A}\right)^{*}\right)=\operatorname{rank}\left(\left(L_{A}\right)^{*} L_{A}\right)=\operatorname{rank}\left(L_{A}\right)
$$

Using the fact that $L_{A^{*}}=\left(L_{A}\right)^{*}$ and $L_{A} L_{B}=L_{A B}$, we have the result.

$$
\begin{aligned}
\operatorname{rank}\left(L_{A A^{*}}\right)=\operatorname{rank}\left(L_{A^{*} A}\right) & =\operatorname{rank}\left(L_{A}\right) \\
\operatorname{rank}\left(A A^{*}\right)=\operatorname{rank}\left(A^{*} A\right) & =\operatorname{rank}(A)
\end{aligned}
$$

15. (a) Note for a fixed $y \in W$, we may regard $\langle T(x), y\rangle_{2}$ as a linear transformation from V to \mathbb{F}. Then there is a unique $z \in V$ such that

$$
\langle T(x), y\rangle_{2}=\langle x, z\rangle_{1}
$$

for all $x \in V$. We may define $T^{*}(y)=z$. As $z \in V$ exists and is unique for any given $y \in W$, we see that $T^{*}: W \rightarrow V$ is well-defined. Hence, we now have

$$
\langle T(x), y\rangle_{2}=\left\langle x, T^{*}(y)\right\rangle_{1}
$$

for any $x \in V$ and $y \in W$. If there is a transformation $U: W \rightarrow V$ satisfying the same condition, we have

$$
\langle x, U(y)\rangle_{1}=\langle T(x), y\rangle_{2}=\left\langle x, T^{*}(y)\right\rangle_{1}
$$

for any $x \in V$ and $y \in W$, which means $U=T^{*}$.
To check the linearity of T^{*}, we have the following.

$$
\begin{aligned}
\left\langle x, T^{*}(y+c z)\right\rangle_{1} & =\langle T(x), y+c z\rangle_{2} \\
& =\langle T(x), y\rangle_{2}+\bar{c}\langle T(x), z\rangle_{2} \\
& =\left\langle x, T^{*}(y)\right\rangle_{2}+\bar{c}\left\langle x, T^{*}(z)\right\rangle_{2} \\
& =\left\langle x, T^{*}(y)+c T^{*}(z)\right\rangle_{1}
\end{aligned}
$$

Since x is arbitrary, we have $T^{*}(y+c z)=T^{*}(y)+c T^{*}(z)$.
(b) Let $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $\gamma=\left\{w_{1}, w_{2}, \ldots, w_{m}\right\}$ be orthonormal bases for V and W respectively. Consider $T\left(v_{j}\right)$ and $T^{*}\left(w_{j}\right)$, we have the following.

$$
T\left(v_{j}\right)=\sum_{i=1}^{m} a_{i j} w_{i}, \quad T^{*}\left(w_{j}\right)=\sum_{i=1}^{n} b_{i j} v_{i}
$$

Note that $[T]_{\beta}^{\gamma}=\left(a_{i j}\right)$ and $\left[T^{*}\right]_{\gamma}^{\beta}=\left(b_{i j}\right)$ Now that $\left\langle x, T^{*}(y)\right\rangle_{1}=$ $\langle T(x), y\rangle_{2}$, we have the following.

$$
\overline{b_{j i}}=\left\langle v_{j}, T^{*}\left(w_{i}\right)\right\rangle_{1}=\left\langle T\left(v_{j}\right), w_{i}\right\rangle_{2}=a_{i j}
$$

Hence, we see that $\left[T^{*}\right]_{\gamma}^{\beta}=\left([T]_{\beta}^{\gamma}\right)^{*}$
(c) Again we have

$$
\operatorname{rank}\left(\left[T^{*}\right]_{\gamma}^{\beta}\right)=\operatorname{rank}\left(\left([T]_{\beta}^{\gamma}\right)^{*}\right)=\operatorname{rank}\left([T]_{\beta}^{\gamma}\right) .
$$

Hence, we have $\operatorname{rank}\left(T^{*}\right)=\operatorname{rank}(T)$.
(d) Using the fact that $\langle a, b\rangle=\overline{\langle b, a\rangle}$ and the property of adjoint.

$$
\left\langle T^{*}(x), y\right\rangle_{1}={\overline{\left\langle y, T^{*}(x)\right\rangle_{1}}}_{1}=\overline{\langle T(y), x\rangle}_{2}=\langle x, T(y)\rangle_{2}
$$

(e) Obviously, if $T(x)=0$, we have $T^{*} T(x)=T^{*}(0)=0$.

Conversely, if $T^{*} T(x)=0$, consider

$$
\|T(x)\|^{2}=\langle T(x), T(x)\rangle_{2}=\left\langle x, T^{*} T(x)\right\rangle_{1}=0
$$

and, hence, we have $T(x)=0$.

