
Solution to Homework 8

Sec. 6.2

17. Note that 〈T (x), y〉 = 0 for any y ∈ V , so we have T (x) = 0. But x is
arbitrary, so T = T0.

Suppose β = {v1, v2, . . . , vn} is a basis for V and

〈T (vi), vj〉 = 0

for 1 ≤ i, j ≤ n. Note that x and y can be expressed as linear combinations
of vis. By the linearity of T and the inner product 〈·, ·〉, one can easily
show that

〈T (x), y〉 = 0

for all x, y ∈ V . Hence, by the above argument, we have T = T0.

18. We show that W⊥e ⊂Wo and W⊥e ⊃Wo.

For any h ∈W⊥e , we decompose h into f and g in this way.

f(t) =
1

2
(h(t) + h(−t))

g(t) =
1

2
(h(t)− h(−t))

Obviously, h = f + g and one can check that f is an even function, while
g is an odd function. By assumption, we have 〈h, f〉 = 0 as f ∈We, which
means

0 = 〈f + g, f〉 = 〈f, f〉+ 〈g, f〉 = ‖f‖2

because 〈g, f〉 =
∫ 1

−1 f(t)g(t)dt = 0 as f(t)g(t) is an even function. Hence,

we have h = f + g = g ∈Wo and W⊥e ⊂Wo.

On the other hand, for any k ∈Wo, we have

〈k, f〉 =

∫ 1

−1
k(t)f(t)dt = 0

for any f ∈ We as k(t)f(t) is an even function. Hence, we have k ∈ W⊥e
and W⊥e ⊃Wo.
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Sec. 6.3

2. (b) Let β = {v1, v2} be the standard basis for C2. Obviously, β is an
orthonormal basis. Then we have

y =

2∑
i=1

g(vi)vi =

(
1
−2

)
.

3. (b) Let z =

(
z1
z2

)
∈ C2. Consider 〈z, T ∗(x)〉, we have the following.

〈z, T ∗(x)〉 = 〈T (z), x〉

=

〈(
2z1 + iz2
(1− i)z1

)
,

(
3− i
1 + 2i

)〉
= (5− i)z1 + (−1 + 3i)z2

Hence, we see that T ∗(x) =

(
5 + i
−1− 3i

)
.

(c) Similarly, let g(t) = at+ b ∈ P1(R).

〈g, T ∗(f)〉 = 〈T (g), f〉
= 〈a+ 3(at+ b), 4− 2t〉

=

∫ 1

−1

(
−6at2 + (10a− 6b)t+ 4(a+ 3b)

)
dt

= 4a+ 24b

By letting T ∗(f) = ct+ d.

〈g, T ∗(f)〉 =

∫ 1

−1
(at+ b)(ct+ d)dt =

2

3
ac+ 2bd

We see that c = 6 and d = 12. Hence, T ∗(f) = 6t+ 12.

6. Obviously, we have

U∗1 = (T + T ∗)∗ = T ∗ + (T ∗)∗ = T + T ∗ = U1

and
U∗2 = (TT ∗)∗ = (T ∗)∗T ∗ = TT ∗ = U2.

8. Note that T is invertible, so T−1 exists.

T ∗(T−1)∗ = (T−1T )∗ = I∗ = I

(T−1)∗T ∗ = (TT−1)∗ = I∗ = I

Hence, T∗ is invertible and (T ∗)−1 = (T−1)∗

2



9. Suppose W is finite-dimensional subspace of V and V = W ⊕W⊥. For
any x, y ∈ V , we have x = x1 + x2 and y = y1 + y2, where x1, y1 ∈W and
x2, y2 ∈ W⊥. So we have 〈x1, y2〉 = 0 = 〈x2, y1〉. We want to show that
T (x) = T ∗(x) for all x ∈ V .

〈T ∗(x), y〉 = 〈x, T (y)〉
= 〈x1 + x2, y1〉
= 〈x1, y1〉

Similarly, we have the following.

〈T (x), y〉 = 〈x1, y1 + y2〉
= 〈x1, y1〉
= 〈T ∗(x), y〉

Since the above holds for any y ∈ V and x is arbitrary, we see that T = T ∗.

10. Note that from Exercise 20 in Sec. 6.1, we have the following.

〈x, y〉 =
1

4
‖x+ y‖2 − 1

4
‖x− y‖2 if F = R

〈x, y〉 =
1

4

4∑
k=1

ik
∥∥x+ iky

∥∥2 if F = C

Now if ‖T (x)‖ = ‖x‖ for all x ∈ V . For F = R, we have the following.

〈T (x), T (y)〉 =
1

4
‖T (x) + T (y)‖2 − 1

4
‖T (x)− T (y)‖2

=
1

4
‖T (x+ y)‖2 − 1

4
‖T (x− y)‖2

=
1

4
‖x+ y‖2 − 1

4
‖x− y‖2

= 〈x, y〉

Similarly, for F = C, we have the following.

〈T (x), T (y)〉 =
1

4

4∑
k=1

ik
∥∥T (x) + ikT (y)

∥∥2
=

1

4

4∑
k=1

ik
∥∥T (x+ iky)

∥∥2
=

1

4

4∑
k=1

ik
∥∥x+ iky

∥∥2
= 〈x, y〉

If 〈T (x), T (y)〉 = 〈x, y〉, we simply take y = x and the result follows.
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13. (a) Obviously, if x ∈ N(T ), we have

T ∗T (x) = T ∗(0) = 0.

So x ∈ N(T ∗T ). Conversely, if x ∈ N(T ∗T ), we have

‖T (x)‖2 = 〈T (x), T (x)〉 = 〈x, T ∗T (x)〉 = 〈x, 0〉 = 0.

So T (x) = 0 and x ∈ N(T ). Note that T ∗T is also a linear operator
on V and V is of finite dimension. By the dimension of rank and
nullity, we see that rank(T ∗T ) = rank(T ).

(b) First, we show that rank(A∗) = rank(A). Note that rank(At) =
rank(A) as the dimension of column space equals that of row space.
Also, we have rank(A) = rank(A) as {v1, v2, . . . , vn} are linearly in-
dependent if and only if {v1, v2, . . . , vn} are linearly independent.∑

bivi =
∑

aivi =
∑

aivi, with ai = bi

As A∗ = At, we have rank(A∗) = rank(A). Then we have

rank([T ]∗β) = rank([T ]β).

But [T ∗]β = [T ]∗β , so we have

rank([T ∗]β) = rank([T ]β).

In other words, rank(T ∗) = rank(T ).

Using (a), we have rank(TT ∗) = rank(T ∗) by considering T ∗ instead
of T . By the above argument, we have

rank(TT ∗) = rank(T ∗) = rank(T ).

(c) From (a) and (b), we have the following.

rank(LA(LA)∗) = rank((LA)∗LA) = rank(LA)

Using the fact that LA∗ = (LA)∗ and LALB = LAB , we have the
result.

rank(LAA∗) = rank(LA∗A) = rank(LA)

rank(AA∗) = rank(A∗A) = rank(A)

15. (a) Note for a fixed y ∈ W , we may regard 〈T (x), y〉2 as a linear trans-
formation from V to F. Then there is a unique z ∈ V such that

〈T (x), y〉2 = 〈x, z〉1
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for all x ∈ V . We may define T ∗(y) = z. As z ∈ V exists and is
unique for any given y ∈W , we see that T ∗ : W → V is well-defined.
Hence, we now have

〈T (x), y〉2 = 〈x, T ∗(y)〉1
for any x ∈ V and y ∈ W . If there is a transformation U : W → V
satisfying the same condition, we have

〈x, U(y)〉1 = 〈T (x), y〉2 = 〈x, T ∗(y)〉1
for any x ∈ V and y ∈W , which means U = T ∗.

To check the linearity of T ∗, we have the following.

〈x, T ∗(y + cz)〉1 = 〈T (x), y + cz〉2
= 〈T (x), y〉2 + c 〈T (x), z〉2
= 〈x, T ∗(y)〉2 + c 〈x, T ∗(z)〉2
= 〈x, T ∗(y) + cT ∗(z)〉1

Since x is arbitrary, we have T ∗(y + cz) = T ∗(y) + cT ∗(z).

(b) Let β = {v1, v2, . . . , vn} and γ = {w1, w2, . . . , wm} be orthonormal
bases for V and W respectively. Consider T (vj) and T ∗(wj), we have
the following.

T (vj) =

m∑
i=1

aijwi, T ∗(wj) =

n∑
i=1

bijvi

Note that [T ]γβ =
(
aij
)

and [T ∗]βγ =
(
bij
)

Now that 〈x, T ∗(y)〉1 =
〈T (x), y〉2, we have the following.

bji = 〈vj , T ∗(wi)〉1 = 〈T (vj), wi〉2 = aij

Hence, we see that [T ∗]βγ = ([T ]γβ)∗

(c) Again we have

rank([T ∗]βγ ) = rank(([T ]γβ)∗) = rank([T ]γβ).

Hence, we have rank(T ∗) = rank(T ).

(d) Using the fact that 〈a, b〉 = 〈b, a〉 and the property of adjoint.

〈T ∗(x), y〉1 = 〈y, T ∗(x)〉1 = 〈T (y), x〉2 = 〈x, T (y)〉2

(e) Obviously, if T (x) = 0, we have T ∗T (x) = T ∗(0) = 0.

Conversely, if T ∗T (x) = 0, consider

‖T (x)‖2 = 〈T (x), T (x)〉2 = 〈x, T ∗T (x)〉1 = 0

and, hence, we have T (x) = 0.
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