Solution to Homework 7

Sec. 6.1

20. Recall from Exercise 19 (a) that $\frac{1}{2}$

$$\begin{aligned} \|x \pm y\|^2 &= \|x\|^2 \pm 2\operatorname{Re} \langle x, y \rangle + \|y\|^2. \end{aligned}$$
(a) Now that $\mathbb{F} = \mathbb{R}$, so $\operatorname{Re} \langle x, y \rangle = \langle x, y \rangle.$
 $\operatorname{RHS} &= \frac{1}{4} \|x + y\|^2 - \frac{1}{4} \|x - y\|^2$
 $&= \frac{1}{4} \left(\|x\|^2 + 2\operatorname{Re} \langle x, y \rangle + \|y\|^2 \right) - \frac{1}{4} \left(\|x\|^2 - 2\operatorname{Re} \langle x, y \rangle + \|y\|^2 \right)$
 $&= \frac{1}{4} \left(4\operatorname{Re} \langle x, y \rangle \right)$
 $&= \langle x, y \rangle$
 $&= \operatorname{LHS}$

(b) Consider $||x + i^k y||^2$ in the right hand side.

$$\begin{aligned} \left\| x + i^{k} y \right\|^{2} &= \left\| x \right\|^{2} + 2 \operatorname{Re} \left\langle x, i^{k} y \right\rangle + \left\| i^{k} y \right\|^{2} \\ &= \left\| x \right\|^{2} + 2 \operatorname{Re} \left(\overline{i^{k}} \left\langle x, y \right\rangle \right) + \left\| y \right\|^{2} \end{aligned}$$

Note that $\sum_{k=1}^{4} i^k = 0.$

$$\begin{split} \sum_{k=1}^{4} i^{k} \left\| x + i^{k} y \right\|^{2} &= \sum_{k=1}^{4} \left(i^{k} \left\| x \right\|^{2} \right) + \sum_{k=1}^{4} \left(i^{k} 2 \operatorname{Re} \left(\overline{i^{k}} \left\langle x, y \right\rangle \right) \right) + \sum_{k=1}^{4} \left(i^{k} \left\| y \right\|^{2} \right) \\ &= \| x \|^{2} \left(\sum_{k=1}^{4} i^{k} \right) + \sum_{k=1}^{4} \left(i^{k} 2 \operatorname{Re} \left(\overline{i^{k}} \left\langle x, y \right\rangle \right) \right) + \| y \|^{2} \left(\sum_{k=1}^{4} i^{k} \right) \\ &= 2 \sum_{k=1}^{4} \left(i^{k} \operatorname{Re} \left(\overline{i^{k}} \left\langle x, y \right\rangle \right) \right) \end{split}$$

By letting $\langle x, y \rangle = a + bi$, we have the following.

$$\sum_{k=1}^{4} \left(i^k \operatorname{Re}\left(\overline{i^k} \langle x, y \rangle \right) \right) = \left((i)(b) + (-1)(-a) + (-i)(-b) + (1)(a) \right)$$
$$= 2(a+bi) = 2 \langle x, y \rangle$$

Hence, the result follows.

23. (a) Note that the standard inner product is defined as $\langle x, y \rangle = \sum_{i=1}^{n} x_i \overline{y_i}$, so we may write $\langle x, y \rangle$ as the matrix multiplication y^*x . Then we have

$$\langle x, Ay \rangle = (Ay)^* x = y^* A^* x = \langle A^* x, y \rangle.$$

(b) From (a), we see that

$$\langle Bx, y \rangle = \langle x, Ay \rangle = \langle A^*x, y \rangle.$$

But this is true for all x and y, so we have $B = A^*$.

(c) It suffices to show that $Q^*Q = QQ^* = I$. But

$$(QQ^*)_{ij} = \sum_{k=1}^n q_{ik} \overline{q_{kj}} = \langle q_i, q_j \rangle,$$

where q_i is the *i*th column of Q and q_{ij} is the *j*th entry of q_i . Obviously, we see that

$$(QQ^*)_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

So $QQ^* = I$. Similarly, we have $Q^*Q = I$ and, hence, $Q^* = Q^{-1}$.

(d) Let α be the standard basis for \mathbb{F}^n . Then $[T]_{\alpha} = A$ and $[U]_{\alpha} = A^*$. Suppose β is an orthonormal basis β for V. As in (c), we define Q to be the matrix whose columns are the vectors in β . Note that $[I]_{\beta}^{\alpha} = Q$ and $[I]_{\alpha}^{\beta} = Q^{-1} = Q^*$. So we have the following.

$$[T]^*_{\beta} = \left([I]^{\beta}_{\alpha}[T]_{\alpha}[I]^{\alpha}_{\beta} \right)^*$$
$$= (Q^* A Q)^*$$
$$= Q^* A^* Q$$
$$= [I]^{\beta}_{\alpha}[U]_{\alpha}[I]^{\alpha}_{\beta} = [U]_{\beta}$$

Sec. 6.2

2. To perform the Gram-Schmidt process, we set $v_1 = w_1$ and do the following orthogonalization.

$$v_k = w_k - \sum_{j=1}^{k-1} \frac{\langle w_k, v_j \rangle}{\|v_j\|^2} v_j$$
 for $k = 2, ..., n$

(f) Let
$$w_1 = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 3 \end{pmatrix}$$
, $w_2 = \begin{pmatrix} 3 \\ 6 \\ 3 \\ -1 \end{pmatrix}$ and $w_3 = \begin{pmatrix} 1 \\ 4 \\ 2 \\ 8 \end{pmatrix}$. Using Gram-Schmidt, we have the following.

Schmidt, we have the following.

$$v_{1} = w_{1} = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 3 \end{pmatrix}$$
$$v_{2} = w_{2} - \frac{\langle w_{2}, v_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v_{1} = \begin{pmatrix} 4 \\ 4 \\ 2 \\ 2 \end{pmatrix}$$
$$v_{3} = w_{3} - \frac{\langle w_{3}, v_{1} \rangle}{\langle v_{1}, v_{1} \rangle} v_{1} - \frac{\langle w_{3}, v_{2} \rangle}{\langle v_{2}, v_{2} \rangle} v_{2} = \begin{pmatrix} -4 \\ 2 \\ 1 \\ 3 \end{pmatrix}$$

Next, we normalize the vectors.

$$u_{1} = \frac{v_{1}}{\|v_{1}\|} = \begin{pmatrix} \frac{1}{\sqrt{15}} \\ -\frac{2}{\sqrt{15}} \\ -\frac{1}{\sqrt{15}} \\ \frac{3}{\sqrt{15}} \end{pmatrix}$$
$$u_{2} = \frac{v_{2}}{\|v_{2}\|} = \begin{pmatrix} \frac{2}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} \end{pmatrix}$$
$$u_{3} = \frac{v_{3}}{\|v_{3}\|} = \begin{pmatrix} -\frac{4}{\sqrt{30}} \\ \frac{2}{\sqrt{30}} \\ \frac{1}{\sqrt{30}} \\ \frac{3}{\sqrt{30}} \end{pmatrix}$$

Finally, we take the inner product of x with u_j to get the Fourier coefficients.

$$\langle x, u_1 \rangle = -\frac{3}{\sqrt{15}}$$
$$\langle x, u_2 \rangle = \frac{4}{\sqrt{10}}$$
$$\langle x, u_3 \rangle = \frac{12}{\sqrt{30}}$$

(f) Let $w_1 = \sin(t)$, $w_2 = \cos(t)$, $w_3 = 1$ and $w_4 = t$. Using Gram-Schmidt, we have the following.

$$v_1 = w_1 = \sin(t)$$

$$v_2 = w_2 - \frac{\langle w_2, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 = \cos(t)$$

$$v_3 = w_3 - \frac{\langle w_3, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle w_3, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 = 1 - \frac{4\sin(t)}{\pi}$$

$$v_4 = w_4 - \frac{\langle w_4, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 - \frac{\langle w_4, v_2 \rangle}{\langle v_2, v_2 \rangle} v_2 - \frac{\langle w_4, v_3 \rangle}{\langle v_3, v_3 \rangle} v_3 = t + \frac{4\cos(t)}{\pi} - \frac{\pi}{2}$$

Next, we normalize the vectors.

$$u_{1} = \frac{v_{1}}{\|v_{1}\|} = \frac{\sqrt{2}\sin(t)}{\sqrt{\pi}}$$
$$u_{2} = \frac{v_{2}}{\|v_{2}\|} = \frac{\sqrt{2}\cos(t)}{\sqrt{\pi}}$$
$$u_{3} = \frac{v_{3}}{\|v_{3}\|} = \frac{\pi - 4\sin(t)}{\sqrt{\pi^{3} - 8\pi}}$$
$$u_{4} = \frac{v_{4}}{\|v_{4}\|} = \frac{8\cos(t) + 2\pi t - \pi^{2}}{\sqrt{\frac{\pi^{5}}{3} - 32\pi}}$$

Finally, we take the inner product of x with u_j to get the Fourier coefficients.

$$\langle x, u_1 \rangle = \frac{\sqrt{2(2\pi + 2)}}{\sqrt{\pi}}$$
$$\langle x, u_2 \rangle = -\frac{4\sqrt{2}}{\sqrt{\pi}}$$
$$\langle x, u_3 \rangle = \frac{\pi^3 + \pi^2 - 8\pi - 8}{\sqrt{\pi^3 - 8\pi}}$$
$$\langle x, u_4 \rangle = \frac{\frac{\pi^4 - 48}{3} - 16}{\sqrt{\frac{\pi^5}{3} - 32\pi}}$$

4. Let $(a, b, c) \in S^{\perp}$, where a, b and c are in \mathbb{C} . Note that $(a, b, c) \perp S$.

$$\begin{split} \langle (a,b,c),(1,0,i)\rangle &= a-ci=0\\ \langle (a,b,c),(1,2,1)\rangle &= a+2b+c=0 \end{split}$$

Hence, $S^{\perp} = \text{span}(\{(i, -\frac{1}{2} - \frac{i}{2}, 1)\}).$

6. Let W be a subspace of V. Note that for any vector $v \in V$, we can express v as a sum of w and u, where $w \in W$ and $u \in W^{\perp}$, that is, $\langle w, u \rangle = 0$. In particular, we can take v = x and we have

$$x = w + u$$

for some $w \in W$ and $u \in W^{\perp}$. Since $x \notin W$, we know that u is not zero. By taking $y = u \neq 0$, the result follows.

$$\langle x, y \rangle = \langle w + u, u \rangle = \langle w, u \rangle + \langle u, u \rangle = \langle u, u \rangle \neq 0$$

Note that for any $v \in V$, there exists unique vectors $w \in W$ and $z \in W^{\perp}$ such that

$$v = w + z.$$

As $W \cap W^{\perp} = \{\mathbf{0}\}$, we see that V is a direct sum of W and W^{\perp} . Since v is arbitrary, the projection on W along W^{\perp} can be defined naturally by T(v) = w. Then it is easy to see that $N(T) = W^{\perp}$. Moreover, as w and z are orthogonal, we have $\langle w, z \rangle = \langle z, w \rangle = 0$. Hence, we have

$$||v||^{2} = ||w||^{2} + ||z||^{2} \ge ||w||^{2} = ||T(v)||^{2}.$$

- 13. (a) Suppose $S_0 \subset S$. For any $x \in S^{\perp}$, we have x to be orthogonal to all elements in S. Since S_0 is a subset of S, x will also be orthogonal to all elements in S_0 . That means $x \in S_0^{\perp}$ and $S^{\perp} \subset S_0^{\perp}$.
 - (b) For any $x \in S$, by definition, x is orthogonal to elements in S^{\perp} . But that just means x is in $(S^{\perp})^{\perp}$. So we have $S \subset (S^{\perp})^{\perp}$. Note that every orthogonal complement is a subspace. Also, span(S) is the smallest subspace containing S and now that $(S^{\perp})^{\perp}$ is a subspace containing S. Hence, we have span $(S) \subset (S^{\perp})^{\perp}$.
 - (c) By similar argument, it is easy to see that $W \subset (W^{\perp})^{\perp}$. For $x \notin W$, by Exercise 6, there is some $y \in W^{\perp}$ such that $\langle x, y \rangle \neq 0$, which means $x \notin (W^{\perp})^{\perp}$. Hence, we have $W^c \subset ((S^{\perp})^{\perp})^c$, where U^c means the complement of U in V. In other words, we have $(W^{\perp})^{\perp} \subset W$. Thus, $W = (W^{\perp})^{\perp}$.
 - (d) It is easy to see that for any $x \in V$, we have x = w + z, where $w \in W$ and $z \in W^{\perp}$ are unique. Moreover, $W \cap W^{\perp} = \{\mathbf{0}\}$ as $x \in W$ and $x \in W^{\perp}$ means $\langle x, x \rangle = 0$, that is $x = \mathbf{0}$. Hence, we see that $V = W \oplus W^{\perp}$.

14. We first show that

$$(W_1 + W_2)^{\perp} = W_1^{\perp} \cap W_2^{\perp}.$$

For any $x \in (W_1 + W_2)^{\perp}$, we have

$$\langle x, w_1 + w_2 \rangle = 0$$

for any $w_1 \in W_1$ and $w_2 \in W_2$. By taking $w_1 = 0$, we have $\langle x, w_2 \rangle = 0$ for any $w_2 \in W_2$. So $x \in W_1^{\perp}$. Similarly, we have $x \in W_2^{\perp}$ and, hence,

$$(W_1 + W_2)^{\perp} \subset W_1^{\perp} \cap W_2^{\perp}.$$

Conversely, for any $x \in W_1^{\perp} \cap W_2^{\perp}$, we have

$$\langle x, w_1 \rangle = 0 = \langle x, w_2 \rangle$$

for any $w_1 \in W_1$ and $w_2 \in W_2$. Then we have $x \in (W_1 + W_2)^{\perp}$ as

$$\langle x, w_1 + w_2 \rangle = \langle x, w_1 \rangle + \langle x, w_2 \rangle = 0 + 0 = 0.$$

Hence, $W_1^{\perp} \cap W_2^{\perp} \subset (W_1 + W_2)^{\perp}$. Next, we show the second equality

$$(W_1 \cap W_2)^{\perp} = W_1^{\perp} + W_2^{\perp}$$

using results from Exercise 13 and the first equality. Note that, from Exercise 13, we have $W_j = (W_j^{\perp})^{\perp}$. Hence, we have the following.

$$(W_1 \cap W_2)^{\perp} = \left(\left(W_1^{\perp} \right)^{\perp} \cap \left(W_2^{\perp} \right)^{\perp} \right)^{\perp} \qquad \text{(by Exercise 13)}$$
$$= \left(\left(W_1^{\perp} + W_2^{\perp} \right)^{\perp} \right)^{\perp} \qquad \text{(by the first equality)}$$
$$= W_1^{\perp} + W_2^{\perp} \qquad \text{(by Exercise 13 again)}$$

16. (a) Let W be the subspace spanned by S, where $S = \{v_1, v_2, \ldots, v_n\}$ is an orthonormal subset of V, so $\langle v_i, v_i \rangle = 1$. Then for any $x \in V$, we may write x = w + z, where $w \in W$ and $z \in W^{\perp}$. But for $w \in W$, we can express w using v_1, v_2, \ldots, v_n .

$$x = z + a_1 v_1 + a_2 v_2 + \cdots + a_n v_n$$

Note that, by taking inner product of x with v_j , we have $a_j = \langle v, v_j \rangle$ as $\langle z, v_j \rangle = 0$. Then $||x||^2$ can be computed in the following way.

$$||x||^{2} = \left\langle z + \sum_{i=1}^{n} a_{i}v_{i}, z + \sum_{j=1}^{n} a_{j}v_{j} \right\rangle$$
$$= \langle z, z \rangle + \sum_{i=1}^{n} |a_{i}|^{2} \langle v_{i}, v_{i} \rangle$$
$$= \langle z, z \rangle + \sum_{i=1}^{n} |a_{i}|^{2}$$
$$\ge \sum_{i=1}^{n} |\langle v, v_{j} \rangle|^{2}$$

(b) From the above argument, we see that the equality holds if and only if $\langle z, z \rangle = 0$ for any x in V. But this is true if and only if z = 0, which means $x = w + z = w \in W$, $x \in \text{span}(S)$.