Solution to Homework 7

Sec. 6.1

20. Recall from Exercise 19 (a) that

$$
\|x \pm y\|^{2}=\|x\|^{2} \pm 2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}
$$

(a) Now that $\mathbb{F}=\mathbb{R}$, so $\operatorname{Re}\langle x, y\rangle=\langle x, y\rangle$.

$$
\begin{aligned}
\mathrm{RHS} & =\frac{1}{4}\|x+y\|^{2}-\frac{1}{4}\|x-y\|^{2} \\
& =\frac{1}{4}\left(\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}\right)-\frac{1}{4}\left(\|x\|^{2}-2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}\right) \\
& =\frac{1}{4}(4 \operatorname{Re}\langle x, y\rangle) \\
& =\langle x, y\rangle \\
& =\text { LHS }
\end{aligned}
$$

(b) Consider $\left\|x+i^{k} y\right\|^{2}$ in the right hand side.

$$
\begin{aligned}
\left\|x+i^{k} y\right\|^{2} & =\|x\|^{2}+2 \operatorname{Re}\left\langle x, i^{k} y\right\rangle+\left\|i^{k} y\right\|^{2} \\
& =\|x\|^{2}+2 \operatorname{Re}\left(\overline{i^{k}}\langle x, y\rangle\right)+\|y\|^{2}
\end{aligned}
$$

Note that $\sum_{k=1}^{4} i^{k}=0$.

$$
\begin{aligned}
\sum_{k=1}^{4} i^{k}\left\|x+i^{k} y\right\|^{2} & =\sum_{k=1}^{4}\left(i^{k}\|x\|^{2}\right)+\sum_{k=1}^{4}\left(i^{k} 2 \operatorname{Re}\left(\overline{i^{k}}\langle x, y\rangle\right)\right)+\sum_{k=1}^{4}\left(i^{k}\|y\|^{2}\right) \\
& =\|x\|^{2}\left(\sum_{k=1}^{4} i^{k}\right)+\sum_{k=1}^{4}\left(i^{k} 2 \operatorname{Re}\left(\overline{i^{k}}\langle x, y\rangle\right)\right)+\|y\|^{2}\left(\sum_{k=1}^{4} i^{k}\right) \\
& =2 \sum_{k=1}^{4}\left(i^{k} \operatorname{Re}\left(\overline{i^{k}}\langle x, y\rangle\right)\right)
\end{aligned}
$$

By letting $\langle x, y\rangle=a+b i$, we have the following.

$$
\begin{aligned}
\sum_{k=1}^{4}\left(i^{k} \operatorname{Re}\left(\overline{i^{k}}\langle x, y\rangle\right)\right) & =((i)(b)+(-1)(-a)+(-i)(-b)+(1)(a)) \\
& =2(a+b i)=2\langle x, y\rangle
\end{aligned}
$$

Hence, the result follows.
23. (a) Note that the standard inner product is defined as $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \overline{y_{i}}$, so we may write $\langle x, y\rangle$ as the matrix multiplication $y^{*} x$. Then we have

$$
\langle x, A y\rangle=(A y)^{*} x=y^{*} A^{*} x=\left\langle A^{*} x, y\right\rangle .
$$

(b) From (a), we see that

$$
\langle B x, y\rangle=\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle .
$$

But this is true for all x and y, so we have $B=A^{*}$.
(c) It suffices to show that $Q^{*} Q=Q Q^{*}=I$. But

$$
\left(Q Q^{*}\right)_{i j}=\sum_{k=1}^{n} q_{i k} \overline{q_{k j}}=\left\langle q_{i}, q_{j}\right\rangle
$$

where q_{i} is the i th column of Q and $q_{i j}$ is the j th entry of q_{i}. Obviously, we see that

$$
\left(Q Q^{*}\right)_{i j}=\left\{\begin{array}{ll}
1 & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} .\right.
$$

So $Q Q^{*}=I$. Similarly, we have $Q^{*} Q=I$ and, hence, $Q^{*}=Q^{-1}$.
(d) Let α be the standard basis for \mathbb{F}^{n}. Then $[T]_{\alpha}=A$ and $[U]_{\alpha}=A^{*}$. Suppose β is an orthonormal basis β for V. As in (c), we define Q to be the matrix whose columns are the vectors in β. Note that $[I]_{\beta}^{\alpha}=Q$ and $[I]_{\alpha}^{\beta}=Q^{-1}=Q^{*}$. So we have the following.

$$
\begin{aligned}
{[T]_{\beta}^{*} } & =\left([I]_{\alpha}^{\beta}[T]_{\alpha}[I]_{\beta}^{\alpha}\right)^{*} \\
& =\left(Q^{*} A Q\right)^{*} \\
& =Q^{*} A^{*} Q \\
& =[I]_{\alpha}^{\beta}[U]_{\alpha}[I]_{\beta}^{\alpha}=[U]_{\beta}
\end{aligned}
$$

Sec. 6.2

2. To perform the Gram-Schmidt process, we set $v_{1}=w_{1}$ and do the following orthogonalization.

$$
v_{k}=w_{k}-\sum_{j=1}^{k-1} \frac{\left\langle w_{k}, v_{j}\right\rangle}{\left\|v_{j}\right\|^{2}} v_{j} \quad \text { for } k=2, \ldots, n
$$

(f) Let $w_{1}=\left(\begin{array}{c}1 \\ -2 \\ -1 \\ 3\end{array}\right), w_{2}=\left(\begin{array}{c}3 \\ 6 \\ 3 \\ -1\end{array}\right)$ and $w_{3}=\left(\begin{array}{l}1 \\ 4 \\ 2 \\ 8\end{array}\right)$. Using GramSchmidt, we have the following.

$$
\begin{gathered}
v_{1}=w_{1}=\left(\begin{array}{c}
1 \\
-2 \\
-1 \\
3
\end{array}\right) \\
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}=\left(\begin{array}{l}
4 \\
4 \\
2 \\
2
\end{array}\right) \\
v_{3}=w_{3}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}=\left(\begin{array}{c}
-4 \\
2 \\
1 \\
3
\end{array}\right)
\end{gathered}
$$

Next, we normalize the vectors.

$$
\begin{aligned}
& u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\left(\begin{array}{c}
\frac{1}{\sqrt{15}} \\
-\frac{2}{\sqrt{15}} \\
-\frac{1}{\sqrt{15}} \\
\frac{3}{\sqrt{15}}
\end{array}\right) \\
& u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\left(\begin{array}{c}
\frac{2}{\sqrt{10}} \\
\frac{2}{\sqrt{10}} \\
\frac{1}{\sqrt{10}} \\
\frac{1}{\sqrt{10}}
\end{array}\right) \\
& u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\left(\begin{array}{c}
-\frac{4}{\sqrt{30}} \\
\frac{2}{\sqrt{30}} \\
\frac{1}{\sqrt{30}} \\
\frac{3}{\sqrt{30}}
\end{array}\right)
\end{aligned}
$$

Finally, we take the inner product of x with u_{j} to get the Fourier coefficients.

$$
\begin{aligned}
\left\langle x, u_{1}\right\rangle & =-\frac{3}{\sqrt{15}} \\
\left\langle x, u_{2}\right\rangle & =\frac{4}{\sqrt{10}} \\
\left\langle x, u_{3}\right\rangle & =\frac{12}{\sqrt{30}}
\end{aligned}
$$

(f) Let $w_{1}=\sin (t), w_{2}=\cos (t), w_{3}=1$ and $w_{4}=t$. Using GramSchmidt, we have the following.

$$
\begin{gathered}
v_{1}=w_{1}=\sin (t) \\
v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}=\cos (t) \\
v_{3}=w_{3}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}=1-\frac{4 \sin (t)}{\pi} \\
v_{4}=w_{4}-\frac{\left\langle w_{4}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}-\frac{\left\langle w_{4}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}-\frac{\left\langle w_{4}, v_{3}\right\rangle}{\left\langle v_{3}, v_{3}\right\rangle} v_{3}=t+\frac{4 \cos (t)}{\pi}-\frac{\pi}{2}
\end{gathered}
$$

Next, we normalize the vectors.

$$
\begin{gathered}
u_{1}=\frac{v_{1}}{\left\|v_{1}\right\|}=\frac{\sqrt{2} \sin (t)}{\sqrt{\pi}} \\
u_{2}=\frac{v_{2}}{\left\|v_{2}\right\|}=\frac{\sqrt{2} \cos (t)}{\sqrt{\pi}} \\
u_{3}=\frac{v_{3}}{\left\|v_{3}\right\|}=\frac{\pi-4 \sin (t)}{\sqrt{\pi^{3}-8 \pi}} \\
u_{4}=\frac{v_{4}}{\left\|v_{4}\right\|}=\frac{8 \cos (t)+2 \pi t-\pi^{2}}{\sqrt{\frac{\pi^{5}}{3}-32 \pi}}
\end{gathered}
$$

Finally, we take the inner product of x with u_{j} to get the Fourier coefficients.

$$
\begin{gathered}
\left\langle x, u_{1}\right\rangle=\frac{\sqrt{2}(2 \pi+2)}{\sqrt{\pi}} \\
\left\langle x, u_{2}\right\rangle=-\frac{4 \sqrt{2}}{\sqrt{\pi}} \\
\left\langle x, u_{3}\right\rangle=\frac{\pi^{3}+\pi^{2}-8 \pi-8}{\sqrt{\pi^{3}-8 \pi}} \\
\left\langle x, u_{4}\right\rangle=\frac{\frac{\pi^{4}-48}{3}-16}{\sqrt{\frac{\pi^{5}}{3}-32 \pi}}
\end{gathered}
$$

4. Let $(a, b, c) \in S^{\perp}$, where a, b and c are in \mathbb{C}. Note that $(a, b, c) \perp S$.

$$
\begin{aligned}
& \langle(a, b, c),(1,0, i)\rangle=a-c i=0 \\
& \langle(a, b, c),(1,2,1)\rangle=a+2 b+c=0
\end{aligned}
$$

Hence, $S^{\perp}=\operatorname{span}\left(\left\{\left(i,-\frac{1}{2}-\frac{i}{2}, 1\right)\right\}\right)$.
6. Let W be a subspace of V. Note that for any vector $v \in V$, we can express v as a sum of w and u, where $w \in W$ and $u \in W^{\perp}$, that is, $\langle w, u\rangle=0$. In particular, we can take $v=x$ and we have

$$
x=w+u
$$

for some $w \in W$ and $u \in W^{\perp}$. Since $x \notin W$, we know that u is not zero. By taking $y=u \neq 0$, the result follows.

$$
\langle x, y\rangle=\langle w+u, u\rangle=\langle w, u\rangle+\langle u, u\rangle=\langle u, u\rangle \neq 0
$$

Note that for any $v \in V$, there exists unique vectors $w \in W$ and $z \in W^{\perp}$ such that

$$
v=w+z .
$$

As $W \cap W^{\perp}=\{\mathbf{0}\}$, we see that V is a direct sum of W and W^{\perp}. Since v is arbitrary, the projection on W along W^{\perp} can be defined naturally by $T(v)=w$. Then it is easy to see that $N(T)=W^{\perp}$. Moreover, as w and z are orthogonal, we have $\langle w, z\rangle=\langle z, w\rangle=0$. Hence, we have

$$
\|v\|^{2}=\|w\|^{2}+\|z\|^{2} \geq\|w\|^{2}=\|T(v)\|^{2} .
$$

13. (a) Suppose $S_{0} \subset S$. For any $x \in S^{\perp}$, we have x to be orthogonal to all elements in S. Since S_{0} is a subset of S, x will also be orthogonal to all elements in S_{0}. That means $x \in S_{0}^{\perp}$ and $S^{\perp} \subset S_{0}^{\perp}$.
(b) For any $x \in S$, by definition, x is orthogonal to elements in S^{\perp}. But that just means x is in $\left(S^{\perp}\right)^{\perp}$. So we have $S \subset\left(S^{\perp}\right)^{\perp}$. Note that every orthogonal complement is a subspace. Also, $\operatorname{span}(S)$ is the smallest subspace containing S and now that $\left(S^{\perp}\right)^{\perp}$ is a subspace containing S. Hence, we have $\operatorname{span}(S) \subset\left(S^{\perp}\right)^{\perp}$.
(c) By similar argument, it is easy to see that $W \subset\left(W^{\perp}\right)^{\perp}$. For $x \notin W$, by Exercise 6 , there is some $y \in W^{\perp}$ such that $\langle x, y\rangle \neq 0$, which means $x \notin\left(W^{\perp}\right)^{\perp}$. Hence, we have $W^{c} \subset\left(\left(S^{\perp}\right)^{\perp}\right)^{c}$, where U^{c} means the complement of U in V. In other words, we have $\left(W^{\perp}\right)^{\perp} \subset$ W. Thus, $W=\left(W^{\perp}\right)^{\perp}$.
(d) It is easy to see that for any $x \in V$, we have $x=w+z$, where $w \in W$ and $z \in W^{\perp}$ are unique. Moreover, $W \cap W^{\perp}=\{\mathbf{0}\}$ as $x \in W$ and $x \in W^{\perp}$ means $\langle x, x\rangle=0$, that is $x=\mathbf{0}$. Hence, we see that $V=W \oplus W^{\perp}$.
14. We first show that

$$
\left(W_{1}+W_{2}\right)^{\perp}=W_{1}^{\perp} \cap W_{2}^{\perp} .
$$

For any $x \in\left(W_{1}+W_{2}\right)^{\perp}$, we have

$$
\left\langle x, w_{1}+w_{2}\right\rangle=0
$$

for any $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. By taking $w_{1}=0$, we have $\left\langle x, w_{2}\right\rangle=0$ for any $w_{2} \in W_{2}$. So $x \in W_{1}^{\perp}$. Similarly, we have $x \in W_{2}^{\perp}$ and, hence,

$$
\left(W_{1}+W_{2}\right)^{\perp} \subset W_{1}^{\perp} \cap W_{2}^{\perp}
$$

Conversely, for any $x \in W_{1}^{\perp} \cap W_{2}^{\perp}$, we have

$$
\left\langle x, w_{1}\right\rangle=0=\left\langle x, w_{2}\right\rangle
$$

for any $w_{1} \in W_{1}$ and $w_{2} \in W_{2}$. Then we have $x \in\left(W_{1}+W_{2}\right)^{\perp}$ as

$$
\left\langle x, w_{1}+w_{2}\right\rangle=\left\langle x, w_{1}\right\rangle+\left\langle x, w_{2}\right\rangle=0+0=0 .
$$

Hence, $W_{1}^{\perp} \cap W_{2}^{\perp} \subset\left(W_{1}+W_{2}\right)^{\perp}$. Next, we show the second equality

$$
\left(W_{1} \cap W_{2}\right)^{\perp}=W_{1}^{\perp}+W_{2}^{\perp}
$$

using results from Exercise 13 and the first equality. Note that, from Exercise 13, we have $W_{j}=\left(W_{j}^{\perp}\right)^{\perp}$. Hence, we have the following.

$$
\begin{array}{rlr}
\left(W_{1} \cap W_{2}\right)^{\perp} & =\left(\left(W_{1}^{\perp}\right)^{\perp} \cap\left(W_{2}^{\perp}\right)^{\perp}\right)^{\perp} & \text { (by Exercise 13) } \\
& =\left(\left(W_{1}^{\perp}+W_{2}^{\perp}\right)^{\perp}\right)^{\perp} & \text { (by the first equality) } \\
& =W_{1}^{\perp}+W_{2}^{\perp} & \text { (by Exercise 13 again) }
\end{array}
$$

16. (a) Let W be the subspace spanned by S, where $S=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ is an orthonormal subset of V, so $\left\langle v_{i}, v_{i}\right\rangle=1$. Then for any $x \in V$, we may write $x=w+z$, where $w \in W$ and $z \in W^{\perp}$. But for $w \in W$, we can express w using $v_{1}, v_{2}, \ldots, v_{n}$.

$$
x=z+a_{1} v_{1}+a_{2} v_{2}+\cdots a_{n} v_{n}
$$

Note that, by taking inner product of x with v_{j}, we have $a_{j}=\left\langle v, v_{j}\right\rangle$ as $\left\langle z, v_{j}\right\rangle=0$. Then $\|x\|^{2}$ can be computed in the following way.

$$
\begin{aligned}
\|x\|^{2} & =\left\langle z+\sum_{i=1}^{n} a_{i} v_{i}, z+\sum_{j=1}^{n} a_{j} v_{j}\right\rangle \\
& =\langle z, z\rangle+\sum_{i=1}^{n}\left|a_{i}\right|^{2}\left\langle v_{i}, v_{i}\right\rangle \\
& =\langle z, z\rangle+\sum_{i=1}^{n}\left|a_{i}\right|^{2} \\
& \geq \sum_{i=1}^{n}\left|\left\langle v, v_{j}\right\rangle\right|^{2}
\end{aligned}
$$

(b) From the above argument, we see that the equality holds if and only if $\langle z, z\rangle=0$ for any x in V. But this is true if and only if $z=0$, which means $x=w+z=w \in W, x \in \operatorname{span}(S)$.

