Solution to Homework 6

Sec. 6.1

3. By definition, we have

$$
\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t
$$

Now $f(t)=t$ and $g(t)=e^{t}$. Then we have the following.

$$
\begin{gathered}
\langle f, g\rangle=\int_{0}^{1} t e^{t} d t=\left[t e^{t}\right]_{0}^{1}-\int_{0}^{1} e^{t} d t=e-(e-1)=1 \\
\langle f, f\rangle=\int_{0}^{1} t^{2} d t=\left[\frac{1}{3} t^{3}\right]_{0}^{1}=\frac{1}{3} \\
\langle g, g\rangle=\int_{0}^{1} e^{2 t} d t=\left[\frac{e^{2 t}}{2}\right]_{0}^{1}=\frac{e^{2}-1}{2} \\
\langle f+g, f+g\rangle=\langle f, f\rangle+2\langle f, g\rangle+\langle g, g\rangle=\frac{1}{3}+2+\frac{e^{2}-1}{2}
\end{gathered}
$$

Hence, we have $\|f\|=\frac{1}{\sqrt{3}},\|g\|=\sqrt{\frac{e^{2}-1}{2}}$ and $\|f+g\|=\sqrt{\frac{1}{3}+2+\frac{e^{2}-1}{2}}$.
To verify the Cauchy-Schwarz inequality, it is easy to check that

$$
\begin{aligned}
|\langle f, g\rangle|^{2} & \leq\langle f, f\rangle \cdot\langle g, g\rangle \\
1 & \leq \frac{1}{3} \cdot \frac{e^{2}-1}{2} \approx 1.0648
\end{aligned}
$$

To verify the triangle inequality, we check the following.

$$
\begin{aligned}
\|f+g\| & \leq\|f\|+\|g\| \\
2.3511 \approx \sqrt{\frac{1}{3}+2+\frac{e^{2}-1}{2}} & \leq \frac{1}{\sqrt{3}}+\sqrt{\frac{e^{2}-1}{2}} \approx 2.3647
\end{aligned}
$$

Hence, both inequalities are satisfied.
8. To check that each of them is not an inner product on the given vector spaces, we need to check that each of them fails some of the conditions to be an inner product.
(a) Note that for $(1,1) \in \mathbb{R}^{2}$, we have

$$
\langle(1,1),(1,1)\rangle=1 \cdot 1-1 \cdot 1=0
$$

but $(1,1) \neq \mathbf{0}$.
(b) Note that for $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \in M_{2 \times 2}(\mathbb{R})$, we have

$$
\left\langle\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\rangle=\operatorname{tr}\left(\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right)=0
$$

but $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) \neq \mathbf{0}$.
(c) Note that for $1 \in P(\mathbb{R})$, we have

$$
\langle 1,1\rangle=\int_{0}^{1} 0 \cdot 1 d t=0
$$

but $1 \neq \mathbf{0}$.
9. Let $\beta=\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ be a basis.
(a) As β is a basis, we can express x as a combination of $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$.

$$
x=a_{1} z_{1}+a_{2} z_{2}+\cdots a_{n} z_{n}
$$

For each $i=1,2, \ldots, n$, we have $\left\langle x, z_{i}\right\rangle=0$, that is, $a_{i}=0$. In other words, $x=0$.
(b) Suppose $\langle x, z\rangle=\langle y, z\rangle$, we have

$$
\langle x-y, z\rangle
$$

by the linearity of inner product. Then, by (a), we have $x-y=0$, that is, $x=y$.
10. Suppose x and y are orthogonal vectors in V. That means $\langle x, y\rangle=\langle y, x\rangle=$ 0 . Then we have the following.

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle \\
& =\langle x, x\rangle+\langle y, y\rangle \\
& =\|x\|^{2}+\|y\|^{2}
\end{aligned}
$$

In particular, when $V=\mathbb{R}^{2}$, let $A, B, C \in \mathbb{R}^{2}$ be vertices of triangle $\triangle A B C$. Taking $x=\overrightarrow{A B}$ and $y=\overrightarrow{B C}$, so $x+y=\overrightarrow{A C}$, by the above, we have

$$
\|\overrightarrow{A C}\|^{2}=\|\overrightarrow{A B}\|^{2}+\|\overrightarrow{B C}\|^{2}
$$

11. The result follows directly from computation.

$$
\begin{aligned}
\|x+y\|^{2}+\|x-y\|^{2}= & \langle x+y, x+y\rangle+\langle x-y, x-y\rangle \\
= & (\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle) \\
& +(\langle x, x\rangle-\langle x, y\rangle-\langle y, x\rangle+\langle y, y\rangle) \\
= & 2\|x\|^{2}+2\|y\|^{2}
\end{aligned}
$$

The equation tells that the sum of the squares of the lengths of the four sides of a parallelogram (right hand side) equals the sum of the squares of the lengths of the two diagonals (left hand side).
12. Let $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an orthogonal set in V and $a_{1}, a_{2}, \ldots, a_{k}$ be scalars. This means $\left\langle v_{i}, v_{j}\right\rangle=\left\langle v_{j}, v_{i}\right\rangle=0$ for every $i \neq j$. Then we have the following.

$$
\begin{aligned}
\left\|\sum_{i=1}^{k} a_{i} v_{i}\right\|^{2} & =\left\langle\sum_{i=1}^{k} a_{i} v_{i}, \sum_{j=1}^{k} a_{j} v_{j}\right\rangle \\
& =\sum_{i=1}^{k} \sum_{j=1}^{k} a_{i} \overline{a_{j}}\left\langle v_{i}, v_{j}\right\rangle \\
& =\sum_{i=1}^{k} a_{i} \overline{a_{i}}\left\langle v_{i}, v_{i}\right\rangle+\sum_{i \neq j} a_{i} \overline{a_{j}}\left\langle v_{i}, v_{j}\right\rangle \\
& =\sum_{i=1}^{k}\left|a_{i}\right|^{2}\left\|v_{i}\right\|^{2}
\end{aligned}
$$

17. Suppose that $\|T(x)\|=\|x\|$. If $T(x)=T(y)$, then, as T is linear, we have $T(x-y)=0$. So $\|x-y\|=\|T(x-y)\|=0$, which means $x=y$. Hence, T is one-to-one.
18. Suppose T is one-to-one, we want to show that $\langle\cdot, \cdot\rangle^{\prime}$ defines an inner product on V.
(a) Linearity

$$
\begin{aligned}
&\langle x+z, y\rangle^{\prime}=\langle T(x+z), T(y)\rangle \\
&=\langle T(x)+T(z), T(y)\rangle \\
&=\langle T(x), T(y)\rangle+\langle T(z), T(y)\rangle=\langle x, y\rangle^{\prime}+\langle z, y\rangle^{\prime} \\
&\langle c x, y\rangle^{\prime} \\
& \quad=\langle T(c x), T(y)\rangle \\
&=\langle c T(x), T(y)\rangle \\
&=c\langle T(x), T(y)\rangle=c\langle x, y\rangle^{\prime}
\end{aligned}
$$

(b) Conjugate symmetry

$$
\begin{aligned}
\langle x, y\rangle^{\prime} & =\langle T(x), T(y)\rangle \\
& =\overline{\langle T(y), T(x)\rangle}=\overline{\langle y, x\rangle^{\prime}}
\end{aligned}
$$

(c) Positive-definiteness

$$
\langle x, x\rangle^{\prime}=\langle T(x), T(x)\rangle>0 \text { as } x \neq 0 \Rightarrow T(x) \neq 0
$$

Conversely, if $\langle\cdot, \cdot\rangle^{\prime}$ defines an inner product on V. By the positivedefiniteness, if $T(x)=0$, then $\langle x, x\rangle^{\prime}=\langle T(x), T(x)\rangle=0$, so $x=0$. Hence, T is one-to-one.
19. (a) From direct computation, we have

$$
\begin{aligned}
\|x+y\|^{2} & =\langle x+y, x+y\rangle \\
& =\|x\|^{2}+\langle x, y\rangle+\langle y, x\rangle+\|y\|^{2} \\
& =\|x\|^{2}+\langle x, y\rangle+\overline{\langle x, y\rangle}+\|y\|^{2} \\
& =\|x\|^{2}+2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2} .
\end{aligned}
$$

Similarly, we have

$$
\|x-y\|^{2}=\|x\|^{2}-2 \operatorname{Re}\langle x, y\rangle+\|y\|^{2}
$$

(b) Note that for any x and y, we have the following.

$$
\left\{\begin{array}{l}
\|x\| \leq\|x-y\|+\|y\| \\
\|y\| \leq\|y-x\|+\|x\|
\end{array}\right.
$$

But $\|x-y\|=\|y-x\|$.

$$
\left\{\begin{array}{l}
\|x\|-\|y\| \leq\|x-y\| \\
\|y\|-\|x\| \leq\|x-y\|
\end{array}\right.
$$

Hence, the result follows.

$$
|\|x\|-\|y\|| \leq\|x-y\|
$$

21. Note that $A^{*}=\overline{A^{t}}$, so $\left(A^{*}\right)^{*}=A$.
(a) From the above fact, we have the following.

$$
\begin{gathered}
A_{1}^{*}=\left(\frac{1}{2}\left(A+A^{*}\right)\right)^{*}=\frac{1}{2}\left(A^{*}+\left(A^{*}\right)^{*}\right)=\frac{1}{2}\left(A^{*}+A\right)=A_{1} \\
A_{2}^{*}=\left(\frac{1}{2 i}\left(A-A^{*}\right)\right)^{*}=-\frac{1}{2 i}\left(A^{*}-\left(A^{*}\right)^{*}\right)=-\frac{1}{2 i}\left(A^{*}-A\right)=A_{2}
\end{gathered}
$$

Lastly, we have

$$
A_{1}+i A_{2}=\frac{1}{2}\left(A+A^{*}\right)+i \frac{1}{2 i}\left(A-A^{*}\right)=A
$$

You can imagine that the *-operation to a matrix is like the complex conjugation to a number. For example, in complex numbers, we have

$$
\operatorname{Re}(z)=\frac{1}{2}(z+\bar{z}), \quad \operatorname{Im}(z)=\frac{1}{2 i}(z-\bar{z})
$$

Similarly, using the adjoint operation, we have

$$
A_{1}=\frac{1}{2}\left(A+A^{*}\right), \quad A_{2}=\frac{1}{2 i}\left(A-A^{*}\right)
$$

Then it is reasonable to say A_{1} is like the "real" part of A and A_{2} is like the "imaginary" part of A. Actually, they do share some similar properties.
One easy example is self-adjointness. For complex numbers, if $z=\bar{z}$, we know that z is real. For matrices, if $A=A^{*}, A$ is actually "real" too, but in the sense of eigenvalues. In this case, A is called selfadjoint.
(b) Suppose $A=B_{1}+i B_{2}, B_{1}^{*}=B_{1}$ and $B_{2}^{*}=B_{2}$. Then we see that

$$
A^{*}=\left(B_{1}+i B_{2}\right)^{*}=B_{1}^{*}-i B_{2}^{*}=B_{1}-i B_{2}
$$

Solving B_{1} and B_{2} yields $A_{1}=B_{1}$ and $A_{2}=B_{2}$.

$$
B_{1}=\frac{1}{2}\left(A+A^{*}\right)=A_{1}, \quad B_{2}=\frac{1}{2 i}\left(A-A^{*}\right)=A_{2}
$$

