
Solution to Homework 6

Sec. 6.1

3. By definition, we have

〈f, g〉 =

∫ 1

0

f(t)g(t)dt.

Now f(t) = t and g(t) = et. Then we have the following.

〈f, g〉 =

∫ 1

0

tetdt =
[
tet
]1
0
−
∫ 1

0

etdt = e− (e− 1) = 1

〈f, f〉 =

∫ 1

0

t2dt =

[
1

3
t3
]1
0

=
1

3

〈g, g〉 =

∫ 1

0

e2tdt =

[
e2t

2

]1
0

=
e2 − 1

2

〈f + g, f + g〉 = 〈f, f〉+ 2 〈f, g〉+ 〈g, g〉 =
1

3
+ 2 +

e2 − 1

2

Hence, we have ‖f‖ = 1√
3
, ‖g‖ =

√
e2−1
2 and ‖f + g‖ =

√
1
3 + 2 + e2−1

2 .

To verify the Cauchy-Schwarz inequality, it is easy to check that

|〈f, g〉|2 ≤ 〈f, f〉 · 〈g, g〉

1 ≤ 1

3
· e

2 − 1

2
≈ 1.0648

To verify the triangle inequality, we check the following.

‖f + g‖ ≤ ‖f‖+ ‖g‖

2.3511 ≈
√

1

3
+ 2 +

e2 − 1

2
≤ 1√

3
+

√
e2 − 1

2
≈ 2.3647

Hence, both inequalities are satisfied.

8. To check that each of them is not an inner product on the given vector
spaces, we need to check that each of them fails some of the conditions to
be an inner product.
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(a) Note that for (1, 1) ∈ R2, we have

〈(1, 1), (1, 1)〉 = 1 · 1− 1 · 1 = 0

but (1, 1) 6= 0.

(b) Note that for

(
0 1
1 0

)
∈M2×2(R), we have

〈(
0 1
1 0

)
,

(
0 1
1 0

)〉
= tr

(
0 2
2 0

)
= 0

but

(
0 1
1 0

)
6= 0.

(c) Note that for 1 ∈ P (R), we have

〈1, 1〉 =

∫ 1

0

0 · 1dt = 0

but 1 6= 0.

9. Let β = {z1, z2, . . . , zn} be a basis.

(a) As β is a basis, we can express x as a combination of {z1, z2, . . . , zn}.

x = a1z1 + a2z2 + · · · anzn

For each i = 1, 2, . . . , n, we have 〈x, zi〉 = 0, that is, ai = 0. In other
words, x = 0.

(b) Suppose 〈x, z〉 = 〈y, z〉, we have

〈x− y, z〉

by the linearity of inner product. Then, by (a), we have x − y = 0,
that is, x = y.

10. Suppose x and y are orthogonal vectors in V . That means 〈x, y〉 = 〈y, x〉 =
0. Then we have the following.

‖x+ y‖2 = 〈x+ y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉
= 〈x, x〉+ 〈y, y〉
= ‖x‖2 + ‖y‖2

In particular, when V = R2, let A,B,C ∈ R2 be vertices of triangle

∆ABC. Taking x =
−−→
AB and y =

−−→
BC, so x + y =

−→
AC, by the above, we

have
‖
−→
AC‖2 = ‖

−−→
AB‖2 + ‖

−−→
BC‖2.
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11. The result follows directly from computation.

‖x+ y‖2 + ‖x− y‖2 = 〈x+ y, x+ y〉+ 〈x− y, x− y〉
= (〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉)

+ (〈x, x〉 − 〈x, y〉 − 〈y, x〉+ 〈y, y〉)
= 2‖x‖2 + 2‖y‖2

The equation tells that the sum of the squares of the lengths of the four
sides of a parallelogram (right hand side) equals the sum of the squares of
the lengths of the two diagonals (left hand side).

12. Let {v1, v2, . . . , vk} be an orthogonal set in V and a1, a2, . . . , ak be scalars.
This means 〈vi, vj〉 = 〈vj , vi〉 = 0 for every i 6= j. Then we have the
following. ∥∥∥∥∥

k∑
i=1

aivi

∥∥∥∥∥
2

=

〈
k∑

i=1

aivi,

k∑
j=1

ajvj

〉

=

k∑
i=1

k∑
j=1

aiaj 〈vi, vj〉

=

k∑
i=1

aiai 〈vi, vi〉+
∑
i6=j

aiaj 〈vi, vj〉

=

k∑
i=1

|ai|2‖vi‖2

17. Suppose that ‖T (x)‖ = ‖x‖. If T (x) = T (y), then, as T is linear, we have
T (x− y) = 0. So ‖x− y‖ = ‖T (x− y)‖ = 0, which means x = y. Hence,
T is one-to-one.

18. Suppose T is one-to-one, we want to show that 〈·, ·〉′ defines an inner
product on V .

(a) Linearity

〈x+ z, y〉′ = 〈T (x+ z), T (y)〉
= 〈T (x) + T (z), T (y)〉
= 〈T (x), T (y)〉+ 〈T (z), T (y)〉 = 〈x, y〉′ + 〈z, y〉′

〈cx, y〉′ = 〈T (cx), T (y)〉
= 〈cT (x), T (y)〉
= c 〈T (x), T (y)〉 = c 〈x, y〉′
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(b) Conjugate symmetry

〈x, y〉′ = 〈T (x), T (y)〉

= 〈T (y), T (x)〉 = 〈y, x〉′

(c) Positive-definiteness

〈x, x〉′ = 〈T (x), T (x)〉 > 0 as x 6= 0⇒ T (x) 6= 0

Conversely, if 〈·, ·〉′ defines an inner product on V . By the positive-
definiteness, if T (x) = 0, then 〈x, x〉′ = 〈T (x), T (x)〉 = 0, so x = 0.
Hence, T is one-to-one.

19. (a) From direct computation, we have

‖x+ y‖2 = 〈x+ y, x+ y〉
= ‖x‖2 + 〈x, y〉+ 〈y, x〉+ ‖y‖2

= ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2

= ‖x‖2 + 2Re〈x, y〉+ ‖y‖2.

Similarly, we have

‖x− y‖2 = ‖x‖2 − 2Re〈x, y〉+ ‖y‖2.

(b) Note that for any x and y, we have the following.{
‖x‖ ≤ ‖x− y‖+ ‖y‖
‖y‖ ≤ ‖y − x‖+ ‖x‖

But ‖x− y‖ = ‖y − x‖.{
‖x‖ − ‖y‖ ≤ ‖x− y‖
‖y‖ − ‖x‖ ≤ ‖x− y‖

Hence, the result follows.

|‖x‖ − ‖y‖| ≤ ‖x− y‖

21. Note that A∗ = At, so (A∗)
∗

= A.

(a) From the above fact, we have the following.

A∗1 =

(
1

2
(A+A∗)

)∗
=

1

2
(A∗ + (A∗)∗) =

1

2
(A∗ +A) = A1

A∗2 =

(
1

2i
(A−A∗)

)∗
= − 1

2i
(A∗ − (A∗)∗) = − 1

2i
(A∗ −A) = A2
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Lastly, we have

A1 + iA2 =
1

2
(A+A∗) + i

1

2i
(A−A∗) = A

You can imagine that the ∗-operation to a matrix is like the complex
conjugation to a number. For example, in complex numbers, we have

Re(z) =
1

2
(z + z̄), Im(z) =

1

2i
(z − z̄)

Similarly, using the adjoint operation, we have

A1 =
1

2
(A+A∗), A2 =

1

2i
(A−A∗)

Then it is reasonable to say A1 is like the “real” part of A and A2 is
like the “imaginary” part of A. Actually, they do share some similar
properties.

One easy example is self-adjointness. For complex numbers, if z = z̄,
we know that z is real. For matrices, if A = A∗, A is actually “real”
too, but in the sense of eigenvalues. In this case, A is called self-
adjoint.

(b) Suppose A = B1 + iB2, B∗1 = B1 and B∗2 = B2. Then we see that

A∗ = (B1 + iB2)∗ = B∗1 − iB∗2 = B1 − iB2.

Solving B1 and B2 yields A1 = B1 and A2 = B2.

B1 =
1

2
(A+A∗) = A1, B2 =

1

2i
(A−A∗) = A2
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