Solution to Homework 4

Sec. 5.1

14. Note that the characteristic polynomial of A is $\operatorname{det}(A-\lambda I))$. By the fact that $\operatorname{det}\left(M^{t}\right)=\operatorname{det}(M)$, one can show that

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left((A-\lambda I)^{t}\right) \\
& =\operatorname{det}\left(A^{t}-\lambda I\right)
\end{aligned}
$$

which means A and A^{t} have the same characteristic polynomial and hence they have the same eigenvalues.

Sec. 5.2

7. If we could diagonalize A, say $A=Q A Q^{-1}$ where D is diagonal. Then we have $A^{n}=\left(Q D Q^{-1}\right)^{n}=Q D^{n} Q^{-1}$, where D^{n} can be easily expressed. So let's diagonalize A.
Consider the characteristic polynomial of A.

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 4 \\
2 & 3-\lambda
\end{array}\right) \\
& =(1-\lambda)(3-\lambda)-2 \cdot 4 \\
& =\lambda^{2}-4 \lambda-5 \\
& =(\lambda+1)(\lambda-5)
\end{aligned}
$$

We see that $\lambda=-1$ and $\lambda=5$ are two eigenvalues.
For $\lambda=-1$,

$$
N(A+I)=N\left(\begin{array}{ll}
2 & 4 \\
2 & 4
\end{array}\right)=\operatorname{span}\left\{\binom{2}{-1}\right\}
$$

For $\lambda=5$,

$$
N(A-5 I)=N\left(\begin{array}{cc}
-4 & 4 \\
2 & -2
\end{array}\right)=\operatorname{span}\left\{\binom{1}{1}\right\}
$$

If we choose

$$
\beta=\left\{\binom{2}{-1},\binom{1}{1}\right\}
$$

as the basis, then $[A]_{\beta}$ will be diagonal. Hence, let

$$
Q=\left(\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right) \text { and } D=\left(\begin{array}{cc}
-1 & 0 \\
0 & 5
\end{array}\right)
$$

Then we have an expression for A^{n}.

$$
A^{n}=Q D^{n} Q^{-1}=Q\left(\begin{array}{cc}
(-1)^{n} & 0 \\
0 & 5^{n}
\end{array}\right) Q^{-1}
$$

8. Note that A is diagonalizable if we could find a basis consisting of eigenvectors of A.

Now that $\operatorname{dim}\left(E_{\lambda_{1}}\right)=n-1$, which means there exists a basis of eigenvectors correspond to eigenvalues λ_{1}. In other words, we have $n-1$ linearly independent eigenvectors.

Also, we have λ_{2} to be an eigenvalue, that means there is some nonzero eigenvector, say v, corresponds to this value. Then $\beta \cup\{v\}$ are n linearly independent eigenvectors of A.

So they form a basis consisting of eigenvectors of A. Hence, A is diagonalizable.
10. Note that the characteristic polynomial of T is

$$
\left(\lambda_{1}-t\right)^{m_{1}}\left(\lambda_{2}-t\right)^{m_{2}} \cdots\left(\lambda_{k}-t\right)^{m_{k}}
$$

as $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ are the eigenvalues and $m_{1}, m_{2}, \ldots, m_{k}$ are the corresponding multiplicities.
Consider upper triangular matrix $[T]_{\beta}$, the characteristic polynomial of $[T]_{\beta}$ is just $\operatorname{det}\left([T]_{\beta}-t I\right)$. Note that $[T]_{\beta}-t I$ is also an upper triangular matrix. So we have

$$
\operatorname{det}\left([T]_{\beta}-t I\right)=\left(d_{1}-t\right)\left(d_{2}-t\right) \cdots\left(d_{n}-t\right)
$$

where $n=\operatorname{dim}(V)$ and $d_{1}, d_{2}, \ldots, d_{n}$ are the diagonal entries of $[T]_{\beta}$.
However, we know that the characteristic polynomial of T does not depends on the choice of basis. So we must have

$$
\left(\lambda_{1}-t\right)^{m_{1}}\left(\lambda_{2}-t\right)^{m_{2}} \cdots\left(\lambda_{k}-t\right)^{m_{k}}=\left(d_{1}-t\right)\left(d_{2}-t\right) \cdots\left(d_{n}-t\right),
$$

which means each d_{j} corresponds to one of the λ_{i} s. Moreover, there are exactly m_{i} of $d_{j} \mathrm{~s}$ appear to be λ_{i}.
11. (a) By similar arguments as in the above exercise, we know that the diagonal entries of A are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ and each λ_{i} occurs m_{i} times. So we have

$$
\operatorname{tr}(A)=\sum_{i=1}^{k} m_{i} \lambda_{i}
$$

(b) Since the determinant of an upper triangular matrix is just the product of the diagonal entries. So we have

$$
\operatorname{det}(A)=\left(\lambda_{1}\right)^{m_{1}}\left(\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda_{k}\right)^{m_{k}}
$$

13. (a) Let $A=\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right)$. Note that

$$
\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right)\binom{0}{1}=\binom{0}{0} \text { and }\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)\binom{1}{-1}=\binom{0}{0}
$$

So $\binom{0}{1}$ is an eigenvector of A and $\binom{1}{-1}$ is an eigenvector of A^{t}, both corresponds to the same eigenvalue 0 . However, the eigenspace of A and A^{t} are not the same as

$$
E_{0}=\operatorname{span}\left\{\binom{0}{1}\right\} \text { and } E_{0}=\operatorname{span}\left\{\binom{1}{-1}\right\}
$$

are the eigenspaces for A and A^{t} respectively.
17. (a) As T and U are simultaneously diagonalizable, they share a basis such that $[T]_{\gamma}$ and $[U]_{\gamma}$ are diagonal matrices.
By changing the basis, we see that

$$
[T]_{\gamma}=[I]_{\beta}^{\gamma}[T]_{\beta}[I]_{\gamma}^{\beta},
$$

where $[I]_{\gamma}^{\beta}$ is invertible and $\left([I]_{\gamma}^{\beta}\right)^{-1}=[I]_{\beta}^{\gamma}$. So if we take $Q=[I]_{\gamma}^{\beta}$, then $Q^{-1}[T]_{\beta} Q=[T]_{\gamma}$ is a diagonal matrix.
As the transition matrices are the same, we have $Q^{-1}[U]_{\beta} Q=[U]_{\gamma}$ too. Hence, there exists an invertible matrix Q such that both $Q^{-1}[T]_{\beta} Q$ and $Q^{-1}[U]_{\beta} Q$ are diagonal.
Since β is arbitrary, $[T]_{\beta}$ and $[U]_{\beta}$ are simultaneously diagonalizable for any ordered basis β.
(b) If A and B are simultaneously diagonalizable, then there exists an invertible matrix Q such that $Q^{-1} A Q$ and $Q^{-1} B Q$ are diagonal.
Let β be the standard basis of \mathbb{F}^{n} and γ be the columns of Q. Then γ is a basis as Q is invertible. Note that $\left[L_{A}\right]_{\beta}$ and $[I]_{\gamma}^{\beta}$ are just A and Q respectively, so we have

$$
\left[L_{A}\right]_{\gamma}=[I]_{\beta}^{\gamma}\left[L_{A}\right]_{\beta}[I]_{\gamma}^{\beta}=Q^{-1} A Q,
$$

which is a diagonal matrix.
Similarly, we have

$$
\left[L_{B}\right]_{\gamma}=[I]_{\beta}^{\gamma}\left[L_{B}\right]_{\beta}[I]_{\gamma}^{\beta}=Q^{-1} B Q .
$$

Hence, L_{A} and L_{B} are simultaneously diagonalizable.
18. (a) If T and U are simultaneously diagonalizable, then there exists a basis $\beta=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ such that $[T]_{\beta}$ and $[U]_{\beta}$ are diagonal matrices. In other words, $T v_{i}=\lambda_{i} v_{i}$ and $U v_{i}=\sigma v_{i}$ for $i=1,2, \ldots, n$. Observe that

$$
T U v_{i}=\sigma_{i} \lambda_{i} v_{i}=\lambda_{i} \sigma_{i} v_{i}=U T v_{i}
$$

for $i=1,2, \ldots, n$. Since β is a basis, for every $x \in V$, we can express x as a linear combination of v_{i}.

$$
x=a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{k}
$$

Then it is easy to check that $T U x=U T x$.

$$
\begin{aligned}
T U x & =T U\left(a_{1} v_{1}+a_{2} v_{2}+\cdots+a_{n} v_{k}\right) \\
& =a_{1} T U v_{1}+a_{2} T U v_{2}+\cdots+a_{n} T U v_{k} \\
& =a_{1} U T v_{1}+a_{2} U T v_{2}+\cdots+a_{n} U T v_{k} \\
& =U T x
\end{aligned}
$$

Since x is arbitrary, T and U commute.
(b) If A and B are simultaneously diagonalizable, then there exists an invertible matrix Q such that $Q^{-1} A Q$ and $Q^{-1} B Q$ are diagonal. Note that diagonal matrices commute.

$$
\left(Q^{-1} A Q\right)\left(Q^{-1} B Q\right)=\left(Q^{-1} B Q\right)\left(Q^{-1} A Q\right)
$$

As Q is invertible, we have $A B=B A$, which means A and B commute.

