
Solution to Homework 3

5.1

3. (c) i. We want to solve det(A− λI) = 0 for some λ

det

(
i− λ 1

2 −i− λ

)
= 0.

Easily, one can get λ2 − 1 = 0. So eigenvalues are −1 and 1.

ii. For λ = −1, we want to solve Av = −v for some nonzero v ∈ C2.

Av = −v ⇒ (A+ I)v = 0⇒
(

1 + i 1
2 1− i

)
v = 0

One possible choice of v is

(
1

−1− i

)
. So

(
1

−1− i

)
is an eigen-

vector with respect to eigenvalue λ = −1.
Similarly, for λ = 1, we want to find a nonzero eigenvector.

Av = v ⇒
(
−1 + i 1

2 −1− i

)
v = 0

One can choose v to be

(
1

1− i

)
. So

(
1

1− i

)
is an eigenvector

with respect to eigenvalue λ = 1.

Obviously, β =

{(
1

−1− i

)
,

(
1

1− i

)}
is a basis for C2 consist-

ing of eigenvectors of A.

iii. Let γ be the standard basis for C2. If we take Q = [I]γβ , which

is invertible, then Q−1AQ = [I]βγ [LA]γ [I]γβ = [LA]β will be a
diagonal matrix as β are the eigenvectors of A.
Hence, we have

Q =

(
1 1

−1− i 1− i

)
and

D =

(
−1 0
0 1

)
.
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(d) i. Again we solve for det(A− λI) = 0.

det

2− λ 0 −1
4 1− λ −4
2 0 −1− λ

 = 0

(1− λ) det

(
2− λ −1

2 −1− λ

)
= 0

So we have (1 − λ) ((2− λ)(−1− λ) + 2) = 0 ⇒ λ(λ − 1)2 = 0.
So 0 and 1 are the eigenvalues of A.

ii. For λ = 0, we solve for some nonzero v as eigenvector.2 0 −1
4 1 −4
2 0 −1

 v = 0

We choose v =

1
4
2

.

For λ = 1, we solve for some nonzero v.1 0 −1
4 0 −4
2 0 −2

 v = 0

Then v =

1
0
1

 and v =

0
1
0

 are two nonzero solutions and

linearly independent to each other.

Hence, β =


1

4
2

 ,

1
0
1

 ,

0
1
0

 is a basis of R3 consisting of

eigenvectors of A.

iii. Let γ be the standard basis for R3. Similarly, we set

Q = [I]γβ =

1 1 0
4 0 1
2 1 0

 .

Then

D =

0 0 0
0 1 0
0 0 1


will be a diagonal matrix consisting of eigenvalues of A in corre-
sponding order.
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4. (e) Let γ = {1, x, x2} be the standard basis for P2(R). Then

[T ]γ =

1 3 9
1 3 4
0 0 2

 .

Next, we solve det([T ]γ − λI) = 0 for some λ.1− λ 3 9
1 3− λ 4
0 0 2− λ


Easily, one can get

0 = (2− λ)((1− λ)(3− λ)− 3) = λ(2− λ)(λ− 4).

Then for each λ, we look for nonzero vectors v such that [T ]γv = λv.

For λ = 0, we have 1 3 9
1 3 4
0 0 2

 v = 0.

One possible solution is v =

−3
1
0

. So we see that −3 + x is an

eigenvector of T .

For λ = 2, we have −1 3 9
1 1 4
0 0 0

 v = 0.

One possible solution is v =

 −3
−13

4

. So we see that −3− 13x+ 4x2

is another eigenvector of T .

For λ = 4, we have −3 3 9
1 −1 4
0 0 −2

 v = 0.

One possible solution is v =

1
1
0

. So we see that 1 + x is another

eigenvector of T .

Hence β =
{
−3 + x,−3− 13x+ 4x2, 1 + x

}
is a basis for P2(R) con-

sisting of eigenvectors of T . So [T ]β is a diagonal matrix.

[T ]β =

0 0 0
0 2 0
0 0 4
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(h) Note that we are solving Tv = v for some λ and 0 6= v ∈M2×2(R).(
d b
c a

)
= T

(
a b
c d

)
= λ

(
a b
c d

)

Let γ =

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
be the standard ba-

sis for M2×2(R). Then one can easily write down

[T ]γ =


0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

 .

Next, by solving det([T ]γ − λI) = 0,

det


−λ 0 0 1
0 1− λ 0 0
0 0 1− λ 0
1 0 0 −λ

 = 0,

one could get λ to be −1 or 1.

For λ = −1, we have (
d b
c a

)
=

(
−a −b
−c −d

)
.

So one possible solution is

(
1 0
0 −1

)
.

For λ = 1, we have (
d b
c a

)
=

(
a b
c d

)
.

So

{(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 0
0 1

)}
are possible linearly independent

solutions.

Together, we have a basis of eigenvectors of T for M2×2(R).

β =

{(
1 0
0 −1

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
1 0
0 1

)}
Moreover, we have

[T ]β =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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8. (a) Note that zero is an eigenvalue of T if and only if there exists some
nonzero vector v such that Tv = 0v = 0. This is equivalent to say
that there exists some nonzero vector

v ∈ N(T − λI) = N(T ),

that is N(T ) 6= {0}. So T is not invertible. In other words, T is
invertible if and only if zero is not an eigenvalue of T .

(b) Again λ is an eigenvalue if and only if T (v) = λv for some nonzero
vector v. As T is invertible, from the above, we see λ 6= 0. So this
means

λv = λ−1T−1(T (v)) = T−1v,

which means that λ−1 is an eigenvalue of T−1.

(c) i. First, we show that M is invertible if and only if λ = 0 is not an
eigenvalue. This is true because λ is an eigenvalue if and only if
there exists some nonzero vector v such that

Mv = λv.

But λ is just zero, this means there is some nontrivial solution
to the system

Mv = 0,

that is M is not invertible. In order words, M is invertible if and
only if zero is not an eigenvalue of M .

ii. Second, we prove that λ−1 is an eigenvalue of M−1. As M is
invertible, we have λ 6= 0 by the above argument. Since there
is some nonzero vector v such that Mv = λv, hence we can
multiply both sides by M−1 and λ−1.

λ−1v = λ−1M−1Mv = M−1v

This is equivalent to say that λ−1 is an eigenvalue of M−1.

12. (a) Suppose A is similar to B, there exists some invertible matrix P such
that

A = P−1BP

with det(P ) 6= 0. Then

det(A− λI) = det(P−1BP − λI)

= det(P−1BP − P−1(λI)P )

= det(P−1(B − λI)P )

= det(P )−1 det(B − λI) det(P )

= det(B − λI)
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(b) Note the representations of a linear operator T are similar matrices.
In order words [T ]α is similar to [T ]β for any choices of bases α
and β. (This is true as for bases α and β, [I]βα is invertible and

[I]αβ =
(
[I]βα

)−1
.)

Then, by the above part, we see that the characteristic polynomial
is well-defined.

Hence, the characteristic polynomial is independent of the choice of
basis for V .

18. (a) Note that if B is invertible, we can “factor” B out from A + cB.
Then, by considering det(A+ cB), we have

det(A+ cB) = det(B) det(B−1A+ xI),

which is a polynomial of x over C.

By the fundamental theorem of algebra, there must be a root of the
polynomial, say c, such that det(B−1A+ cI) = 0.

Hence, there exists some scalar c ∈ C such that det(A+ cB) = 0, in
other words A+ cB is not invertible.

(b) From the above, we see that if B is invertible, then A+ cB will not
be invertible for some c ∈ C. So we choose B to be some nonzero
matrix which is not invertible.

B =

(
1 1
0 0

)

Let A =

(
i j
k l

)
. Then

A =

(
i j
k l

)
and A+ cB =

(
i+ c j + c
k l

)
are invertible for all c ∈ C. In other words, we need il 6= jk and
(i + c)l 6= (j + c)k. One possible choice is to choose k = l 6= 0, then
any i 6= j would give a feasible solution. So we may choose

A =

(
1 0
1 1

)
and A and A+ cB would be invertible for all c ∈ C.

20. By definition, we have det(A−tI) = f(t). So when t = 0, we get det(A) =
f(0) = a0. In other words, A is invertible if and only if a0 6= 0.

21. (a) Let’s prove main statement by induction.

For n = 2, we have f(t) = det(A− tI) = (A11− t)(A22− t)−A12A21.
As A12A21, a constant, is a polynomial of 0 degree, the statement is
true for n = 2.
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Assume the statement is true for n = k− 1. We prove the statement
for n = k. First, expand the determinant along the first row.

det(A− tI) = (A11 − t) det(Ã11 − tĨ) +

n∑
j=2

(−1)1+jA1j det(B1j)

(Here Ĩ is just I(n−1)×(n−1).)
A11 − t A12 A13 · · · A1n

A21 A22 − t A23 · · · A2n

A31 A32 A33 − t · · · A3n

...
...

...
. . .

...
An1 An2 An3 · · · Ann − t


We observe that the first columns of each B1j is independent of t. So
we can expand the determinant along the first row.

det(B1j) =

n−1∑
k=1

(B1j)ik det((̃B1j)ik)

Note that (̃B1j)ik is an (n − 2) × (n − 2) matrix with at most one

entry involving t, det((̃B1j)ik) is a polynomial in t of degree not
greater than n−2 †, so is det(B1j). So the second part of det(A− tI)
is a polynomial of degree at most n− 2.

The first part follows easily from the induction hypothesis. We have

det(Ã11 − tĨ) = (A22 − t) · · · (Ann − t) + q(t),

where q(t) is a polynomial of degree at most n− 2.

Hence, we get

det(A− tI) =(A11 − t)(A22 − t) · · · (Ann − t)

+ q(t) +

n∑
j=2

(−1)1+jA1j det(B1j)︸ ︷︷ ︸
p(t)

,

where p(t) is a polynomial of degree at most n − 2. The statement
then follows by induction.

† We claim that if B ∈Mn×n(R) is a matrix such that in each row, at
most one entry involves variable t, then det(B) is a polynomial in t
of degree not greater than n.

When n = 1, this is obviously true.
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Suppose the claim holds for n = k − 1. When n = k, we note that,
by expanding the determinant along some row,

det(B) =

n∑
j=1

Bij det(B̃ij)

for some i. It is easy to see that B̃ij is a matrix with at most one

entry involving t in each row. So, by induction hypothesis, det(B̃ij)
is a polynomial in t with degree not greater than n− 1.

As a result det(B) is a polynomial in t with degree not greater than
n. Hence, by induction, the claim is true.

(b) From the Exercise 20, we have

f(t) = (−1)ntn + an−1t
n−1 + · · ·+ a1t+ a0.

From the above part, we have

f(t) =(A11 − t)(A22 − t) · · · (Ann − t) + q(t)

=(−1)ntn + (A11 +A22 + · · ·+Ann)(−1)n−1tn−1 + r(t),

where r(t) are terms of degree at most n− 2.

Hence, we see that

tr(A) =

n∑
i=1

Aii = (−1)n−1an−1.

5.2

2. (e) First, we look at the characteristic polynomial of A.

det

−λ 0 1
1 −λ −1
0 1 1− λ

 = 0

We then get

−λ3 + λ2 − λ+ 1 = (1− λ)(λ2 + 1) = 0,

which does not split in R. So we conclude that A is not diagonaliz-
able.

3. (c) Let γ be the standard basis for R2. Then one can easily write down

[T ]γ =

 0 1 0
−1 0 0
0 0 2

 .
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Then we see that the characteristic polynomial of T , which is the
same as that of [T ]γ , does not split over R.

det

−λ 1 0
−1 −λ 0
0 0 2− λ

 = (2− λ)(λ2 + 1) = 0

Hence, T is not diagonalizable over R.

12. (a) Let Eλ denotes the eigenspace of T corresponding to λ and Fλ−1

denotes the eigenspace of T−1 corresponding to λ−1.

Recall that for any eigenvalue λ of T , λ−1 is an eigenvalue of T−1.
So for any v ∈ Eλ, it is an eigenvector of T . Then it is an eigenvector
of T−1, which means v ∈ Fλ−1 .

Similarly, one can show v ∈ Fλ−1 implies v ∈ Eλ.

Hence, Eλ = Fλ−1 .

(b) If T is diagonalizable, then there exists a basis β for V consisting of
eigenvectors of T . As T is invertible, β is also a basis for V consisting
of eigenvectors of T−1.

Hence, T−1 is also diagonalizable.
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