Solution to Homework 3

5.1

3. (c) i. We want to solve $det(A - \lambda I) = 0$ for some λ

$$\det \begin{pmatrix} i-\lambda & 1\\ 2 & -i-\lambda \end{pmatrix} = 0.$$

Easily, one can get $\lambda^2 - 1 = 0$. So eigenvalues are -1 and 1. ii. For $\lambda = -1$, we want to solve Av = -v for some nonzero $v \in \mathbb{C}^2$.

$$Av = -v \Rightarrow (A+I)v = 0 \Rightarrow \begin{pmatrix} 1+i & 1\\ 2 & 1-i \end{pmatrix} v = 0$$

One possible choice of v is $\begin{pmatrix} 1 \\ -1-i \end{pmatrix}$. So $\begin{pmatrix} 1 \\ -1-i \end{pmatrix}$ is an eigenvector with respect to eigenvalue $\lambda = -1$.

Similarly, for $\lambda = 1$, we want to find a nonzero eigenvector.

$$Av = v \Rightarrow \begin{pmatrix} -1+i & 1\\ 2 & -1-i \end{pmatrix} v = 0$$

One can choose v to be $\begin{pmatrix} 1\\ 1-i \end{pmatrix}$. So $\begin{pmatrix} 1\\ 1-i \end{pmatrix}$ is an eigenvector with respect to eigenvalue $\lambda = 1$. Obviously, $\beta = \left\{ \begin{pmatrix} 1\\ -1-i \end{pmatrix}, \begin{pmatrix} 1\\ 1-i \end{pmatrix} \right\}$ is a basis for \mathbb{C}^2 consisting of eigenvectors of A

ing of eigenvectors of A.

iii. Let γ be the standard basis for \mathbb{C}^2 . If we take $Q = [I]^{\gamma}_{\beta}$, which is invertible, then $Q^{-1}AQ = [I]^{\beta}_{\gamma}[L_A]_{\gamma}[I]^{\gamma}_{\beta} = [L_A]_{\beta}$ will be a diagonal matrix as β are the eigenvectors of A. Hence, we have

$$Q = \begin{pmatrix} 1 & 1\\ -1 - i & 1 - i \end{pmatrix}$$

and

$$D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

(d) i. Again we solve for $det(A - \lambda I) = 0$.

$$\det \begin{pmatrix} 2-\lambda & 0 & -1\\ 4 & 1-\lambda & -4\\ 2 & 0 & -1-\lambda \end{pmatrix} = 0$$
$$(1-\lambda)\det \begin{pmatrix} 2-\lambda & -1\\ 2 & -1-\lambda \end{pmatrix} = 0$$

So we have $(1 - \lambda)((2 - \lambda)(-1 - \lambda) + 2) = 0 \Rightarrow \lambda(\lambda - 1)^2 = 0$. So 0 and 1 are the eigenvalues of A.

ii. For $\lambda = 0$, we solve for some nonzero v as eigenvector.

$$\begin{pmatrix} 2 & 0 & -1 \\ 4 & 1 & -4 \\ 2 & 0 & -1 \end{pmatrix} v = 0$$

We choose $v = \begin{pmatrix} 1\\4\\2 \end{pmatrix}$.

For $\lambda = 1$, we solve for some nonzero v.

$$\begin{pmatrix} 1 & 0 & -1 \\ 4 & 0 & -4 \\ 2 & 0 & -2 \end{pmatrix} v = 0$$

Then $v = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$ and $v = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ are two nonzero solutions and linearly independent to each other. Hence, $\beta = \left\{ \begin{pmatrix} 1 \\ 4 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}$ is a basis of \mathbb{R}^3 consisting of eigenvectors of A.

iii. Let γ be the standard basis for \mathbb{R}^3 . Similarly, we set

$$Q = [I]_{\beta}^{\gamma} = \begin{pmatrix} 1 & 1 & 0 \\ 4 & 0 & 1 \\ 2 & 1 & 0 \end{pmatrix}.$$

Then

$$D = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

will be a diagonal matrix consisting of eigenvalues of A in corresponding order.

4. (e) Let $\gamma = \{1, x, x^2\}$ be the standard basis for $P_2(\mathbb{R})$. Then

$$[T]_{\gamma} = \begin{pmatrix} 1 & 3 & 9\\ 1 & 3 & 4\\ 0 & 0 & 2 \end{pmatrix}.$$

Next, we solve $det([T]_{\gamma} - \lambda I) = 0$ for some λ .

$$\begin{pmatrix} 1-\lambda & 3 & 9\\ 1 & 3-\lambda & 4\\ 0 & 0 & 2-\lambda \end{pmatrix}$$

Easily, one can get

$$0 = (2 - \lambda)((1 - \lambda)(3 - \lambda) - 3) = \lambda(2 - \lambda)(\lambda - 4).$$

Then for each λ , we look for nonzero vectors v such that $[T]_{\gamma}v = \lambda v$. For $\lambda = 0$, we have

$$\begin{pmatrix} 1 & 3 & 9 \\ 1 & 3 & 4 \\ 0 & 0 & 2 \end{pmatrix} v = 0.$$

One possible solution is $v = \begin{pmatrix} -3 \\ 1 \\ 0 \end{pmatrix}$. So we see that -3 + x is an

eigenvector of T. For $\lambda = 2$, we have

$$\begin{pmatrix} -1 & 3 & 9\\ 1 & 1 & 4\\ 0 & 0 & 0 \end{pmatrix} v = 0.$$

n is $v = \begin{pmatrix} -3\\ -13 \end{pmatrix}$. So we

One possible solution is $v = \begin{pmatrix} -3 \\ -13 \\ 4 \end{pmatrix}$. So we see that $-3 - 13x + 4x^2$ is another eigenvector of T.

For $\lambda = 4$, we have

$$\begin{pmatrix} -3 & 3 & 9\\ 1 & -1 & 4\\ 0 & 0 & -2 \end{pmatrix} v = 0.$$

One possible solution is $v = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$. So we see that 1 + x is another

eigenvector of T.

Hence $\beta = \{-3 + x, -3 - 13x + 4x^2, 1 + x\}$ is a basis for $P_2(\mathbb{R})$ consisting of eigenvectors of T. So $[T]_{\beta}$ is a diagonal matrix.

$$[T]_{\beta} = \begin{pmatrix} 0 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 4 \end{pmatrix}$$

(h) Note that we are solving Tv = v for some λ and $\mathbf{0} \neq v \in M_{2 \times 2}(\mathbb{R})$.

$$\begin{pmatrix} d & b \\ c & a \end{pmatrix} = T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Let $\gamma = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ be the standard basis for $M_{2 \times 2}(\mathbb{R})$. Then one can easily write down

$$[T]_{\gamma} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$$

Next, by solving $\det([T]_{\gamma} - \lambda I) = 0$,

$$\det \begin{pmatrix} -\lambda & 0 & 0 & 1\\ 0 & 1-\lambda & 0 & 0\\ 0 & 0 & 1-\lambda & 0\\ 1 & 0 & 0 & -\lambda \end{pmatrix} = 0,$$

one could get λ to be -1 or 1. For $\lambda = -1$, we have

$$\begin{pmatrix} d & b \\ c & a \end{pmatrix} = \begin{pmatrix} -a & -b \\ -c & -d \end{pmatrix}.$$

So one possible solution is $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. For $\lambda = 1$, we have

$$\begin{pmatrix} d & b \\ c & a \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

So $\left\{ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$ are possible linearly independent solutions.

Together, we have a basis of eigenvectors of T for $M_{2\times 2}(\mathbb{R})$.

$$\beta = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}$$

Moreover, we have

$$[T]_{\beta} = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

8. (a) Note that zero is an eigenvalue of T if and only if there exists some nonzero vector v such that Tv = 0v = 0. This is equivalent to say that there exists some nonzero vector

$$v \in N(T - \lambda I) = N(T),$$

that is $N(T) \neq \{0\}$. So T is not invertible. In other words, T is invertible if and only if zero is not an eigenvalue of T.

(b) Again λ is an eigenvalue if and only if $T(v) = \lambda v$ for some nonzero vector v. As T is invertible, from the above, we see $\lambda \neq 0$. So this means

$$\lambda v = \lambda^{-1} T^{-1}(T(v)) = T^{-1} v,$$

which means that λ^{-1} is an eigenvalue of T^{-1} .

(c) i. First, we show that M is invertible if and only if $\lambda = 0$ is not an eigenvalue. This is true because λ is an eigenvalue if and only if there exists some nonzero vector v such that

$$Mv = \lambda v.$$

But λ is just zero, this means there is some nontrivial solution to the system

$$Mv = 0,$$

that is M is not invertible. In order words, M is invertible if and only if zero is not an eigenvalue of M.

ii. Second, we prove that λ^{-1} is an eigenvalue of M^{-1} . As M is invertible, we have $\lambda \neq 0$ by the above argument. Since there is some nonzero vector v such that $Mv = \lambda v$, hence we can multiply both sides by M^{-1} and λ^{-1} .

$$\lambda^{-1}v = \lambda^{-1}M^{-1}Mv = M^{-1}v$$

This is equivalent to say that λ^{-1} is an eigenvalue of M^{-1} .

12. (a) Suppose A is similar to B, there exists some invertible matrix P such that

$$A = P^{-1}BP$$

with $det(P) \neq 0$. Then

$$det(A - \lambda I) = det(P^{-1}BP - \lambda I)$$

= det(P^{-1}BP - P^{-1}(\lambda I)P)
= det(P^{-1}(B - \lambda I)P)
= det(P)^{-1} det(B - \lambda I) det(P)
= det(B - \lambda I)

(b) Note the representations of a linear operator T are similar matrices. In order words $[T]_{\alpha}$ is similar to $[T]_{\beta}$ for any choices of bases α and β . (This is true as for bases α and β , $[I]_{\alpha}^{\beta}$ is invertible and $[I]_{\beta}^{\alpha} = ([I]_{\alpha}^{\beta})^{-1}$.)

Then, by the above part, we see that the characteristic polynomial is well-defined.

Hence, the characteristic polynomial is independent of the choice of basis for V.

18. (a) Note that if B is invertible, we can "factor" B out from A + cB. Then, by considering det(A + cB), we have

$$\det(A + cB) = \det(B) \det(B^{-1}A + xI),$$

which is a polynomial of x over \mathbb{C} .

By the fundamental theorem of algebra, there must be a root of the polynomial, say c, such that $det(B^{-1}A + cI) = 0$.

Hence, there exists some scalar $c \in \mathbb{C}$ such that det(A + cB) = 0, in other words A + cB is not invertible.

(b) From the above, we see that if B is invertible, then A + cB will not be invertible for some $c \in \mathbb{C}$. So we choose B to be some nonzero matrix which is not invertible.

$$B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

Let $A = \begin{pmatrix} i & j \\ k & l \end{pmatrix}$. Then $A = \begin{pmatrix} i & j \\ k & l \end{pmatrix}$ and $A + cB = \begin{pmatrix} i + c & j + c \\ k & l \end{pmatrix}$

are invertible for all $c \in \mathbb{C}$. In other words, we need $il \neq jk$ and $(i+c)l \neq (j+c)k$. One possible choice is to choose $k = l \neq 0$, then any $i \neq j$ would give a feasible solution. So we may choose

$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

and A and A + cB would be invertible for all $c \in \mathbb{C}$.

- 20. By definition, we have det(A tI) = f(t). So when t = 0, we get $det(A) = f(0) = a_0$. In other words, A is invertible if and only if $a_0 \neq 0$.
- 21. (a) Let's prove main statement by induction.

For n = 2, we have $f(t) = \det(A - tI) = (A_{11} - t)(A_{22} - t) - A_{12}A_{21}$. As $A_{12}A_{21}$, a constant, is a polynomial of 0 degree, the statement is true for n = 2. Assume the statement is true for n = k - 1. We prove the statement for n = k. First, expand the determinant along the first row.

$$\det(A - tI) = (A_{11} - t) \det(\tilde{A}_{11} - t\tilde{I}) + \sum_{j=2}^{n} (-1)^{1+j} A_{1j} \det(B_{1j})$$

(Here \tilde{I} is just $I_{(n-1)\times(n-1)}$.)

$$\begin{pmatrix} A_{11} - t & A_{12} & A_{13} & \cdots & A_{1n} \\ A_{21} & A_{22} - t & A_{23} & \cdots & A_{2n} \\ A_{31} & A_{32} & A_{33} - t & \cdots & A_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ A_{n1} & A_{n2} & A_{n3} & \cdots & A_{nn} - t \end{pmatrix}$$

We observe that the first columns of each B_{1j} is independent of t. So we can expand the determinant along the first row.

$$\det(B_{1j}) = \sum_{k=1}^{n-1} (B_{1j})_{ik} \det(\widetilde{(B_{1j})}_{ik})$$

Note that $(B_{1j})_{ik}$ is an $(n-2) \times (n-2)$ matrix with at most one entry involving t, $\det((B_{1j})_{ik})$ is a polynomial in t of degree not greater than $n-2^{\dagger}$, so is $\det(B_{1j})$. So the second part of $\det(A-tI)$ is a polynomial of degree at most n-2.

The first part follows easily from the induction hypothesis. We have

 $\det(\tilde{A}_{11} - t\tilde{I}) = (A_{22} - t) \cdots (A_{nn} - t) + q(t),$

where q(t) is a polynomial of degree at most n-2. Hence, we get

$$\det(A - tI) = (A_{11} - t)(A_{22} - t) \cdots (A_{nn} - t) + q(t) + \sum_{j=2}^{n} (-1)^{1+j} A_{1j} \det(B_{1j}),$$

where p(t) is a polynomial of degree at most n-2. The statement then follows by induction.

[†] We claim that if $B \in M_{n \times n}(\mathbb{R})$ is a matrix such that in each row, at most one entry involves variable t, then $\det(B)$ is a polynomial in t of degree not greater than n.

When n = 1, this is obviously true.

Suppose the claim holds for n = k - 1. When n = k, we note that, by expanding the determinant along some row,

$$\det(B) = \sum_{j=1}^{n} B_{ij} \det(\tilde{B}_{ij})$$

for some *i*. It is easy to see that \tilde{B}_{ij} is a matrix with at most one entry involving *t* in each row. So, by induction hypothesis, det (\tilde{B}_{ij}) is a polynomial in *t* with degree not greater than n-1.

As a result det(B) is a polynomial in t with degree not greater than n. Hence, by induction, the claim is true.

(b) From the Exercise 20, we have

$$f(t) = (-1)^n t^n + a_{n-1} t^{n-1} + \dots + a_1 t + a_0.$$

From the above part, we have

$$f(t) = (A_{11} - t)(A_{22} - t) \cdots (A_{nn} - t) + q(t)$$

= $(-1)^n t^n + (A_{11} + A_{22} + \cdots + A_{nn})(-1)^{n-1} t^{n-1} + r(t),$

where r(t) are terms of degree at most n-2. Hence, we see that

$$tr(A) = \sum_{i=1}^{n} A_{ii} = (-1)^{n-1} a_{n-1}$$

5.2

2. (e) First, we look at the characteristic polynomial of A.

$$\det \begin{pmatrix} -\lambda & 0 & 1\\ 1 & -\lambda & -1\\ 0 & 1 & 1-\lambda \end{pmatrix} = 0$$

We then get

$$-\lambda^{3} + \lambda^{2} - \lambda + 1 = (1 - \lambda)(\lambda^{2} + 1) = 0,$$

which does not split in \mathbb{R} . So we conclude that A is not diagonalizable.

3. (c) Let γ be the standard basis for \mathbb{R}^2 . Then one can easily write down

$$[T]_{\gamma} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

Then we see that the characteristic polynomial of T, which is the same as that of $[T]_{\gamma}$, does not split over \mathbb{R} .

$$\det \begin{pmatrix} -\lambda & 1 & 0\\ -1 & -\lambda & 0\\ 0 & 0 & 2-\lambda \end{pmatrix} = (2-\lambda)(\lambda^2+1) = 0$$

Hence, T is not diagonalizable over \mathbb{R} .

- 12. (a) Let E_{λ} denotes the eigenspace of T corresponding to λ and $F_{\lambda^{-1}}$ denotes the eigenspace of T^{-1} corresponding to λ^{-1} . Recall that for any eigenvalue λ of T, λ^{-1} is an eigenvalue of T^{-1} . So for any $v \in E_{\lambda}$, it is an eigenvector of T. Then it is an eigenvector of T^{-1} , which means $v \in F_{\lambda^{-1}}$. Similarly, one can show $v \in F_{\lambda^{-1}}$ implies $v \in E_{\lambda}$. Hence, $E_{\lambda} = F_{\lambda^{-1}}$.
 - (b) If T is diagonalizable, then there exists a basis β for V consisting of eigenvectors of T. As T is invertible, β is also a basis for V consisting of eigenvectors of T^{-1} .

Hence, T^{-1} is also diagonalizable.