Solution to Homework 3

5.1

3. (c) i. We want to solve $\operatorname{det}(A-\lambda I)=0$ for some λ

$$
\operatorname{det}\left(\begin{array}{cc}
i-\lambda & 1 \\
2 & -i-\lambda
\end{array}\right)=0
$$

Easily, one can get $\lambda^{2}-1=0$. So eigenvalues are -1 and 1 .
ii. For $\lambda=-1$, we want to solve $A v=-v$ for some nonzero $v \in \mathbb{C}^{2}$.

$$
A v=-v \Rightarrow(A+I) v=0 \Rightarrow\left(\begin{array}{cc}
1+i & 1 \\
2 & 1-i
\end{array}\right) v=0
$$

One possible choice of v is $\binom{1}{-1-i}$. So $\binom{1}{-1-i}$ is an eigenvector with respect to eigenvalue $\lambda=-1$.
Similarly, for $\lambda=1$, we want to find a nonzero eigenvector.

$$
A v=v \Rightarrow\left(\begin{array}{cc}
-1+i & 1 \\
2 & -1-i
\end{array}\right) v=0
$$

One can choose v to be $\binom{1}{1-i}$. So $\binom{1}{1-i}$ is an eigenvector with respect to eigenvalue $\lambda=1$.
Obviously, $\beta=\left\{\binom{1}{-1-i},\binom{1}{1-i}\right\}$ is a basis for \mathbb{C}^{2} consisting of eigenvectors of A.
iii. Let γ be the standard basis for \mathbb{C}^{2}. If we take $Q=[I]_{\beta}^{\gamma}$, which is invertible, then $Q^{-1} A Q=[I]_{\gamma}^{\beta}\left[L_{A}\right]_{\gamma}[I]_{\beta}^{\gamma}=\left[L_{A}\right]_{\beta}$ will be a diagonal matrix as β are the eigenvectors of A. Hence, we have

$$
Q=\left(\begin{array}{cc}
1 & 1 \\
-1-i & 1-i
\end{array}\right)
$$

and

$$
D=\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)
$$

(d) i. Again we solve for $\operatorname{det}(A-\lambda I)=0$.

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
2-\lambda & 0 & -1 \\
4 & 1-\lambda & -4 \\
2 & 0 & -1-\lambda
\end{array}\right) & =0 \\
(1-\lambda) \operatorname{det}\left(\begin{array}{cc}
2-\lambda & -1 \\
2 & -1-\lambda
\end{array}\right) & =0
\end{aligned}
$$

So we have $(1-\lambda)((2-\lambda)(-1-\lambda)+2)=0 \Rightarrow \lambda(\lambda-1)^{2}=0$. So 0 and 1 are the eigenvalues of A.
ii. For $\lambda=0$, we solve for some nonzero v as eigenvector.

$$
\left(\begin{array}{lll}
2 & 0 & -1 \\
4 & 1 & -4 \\
2 & 0 & -1
\end{array}\right) v=0
$$

We choose $v=\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right)$.
For $\lambda=1$, we solve for some nonzero v.

$$
\left(\begin{array}{lll}
1 & 0 & -1 \\
4 & 0 & -4 \\
2 & 0 & -2
\end{array}\right) v=0
$$

Then $v=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$ and $v=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ are two nonzero solutions and linearly independent to each other.
Hence, $\beta=\left\{\left(\begin{array}{l}1 \\ 4 \\ 2\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$ is a basis of \mathbb{R}^{3} consisting of eigenvectors of A.
iii. Let γ be the standard basis for \mathbb{R}^{3}. Similarly, we set

$$
Q=[I]_{\beta}^{\gamma}=\left(\begin{array}{lll}
1 & 1 & 0 \\
4 & 0 & 1 \\
2 & 1 & 0
\end{array}\right)
$$

Then

$$
D=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

will be a diagonal matrix consisting of eigenvalues of A in corresponding order.
4. (e) Let $\gamma=\left\{1, x, x^{2}\right\}$ be the standard basis for $P_{2}(\mathbb{R})$. Then

$$
[T]_{\gamma}=\left(\begin{array}{lll}
1 & 3 & 9 \\
1 & 3 & 4 \\
0 & 0 & 2
\end{array}\right)
$$

Next, we solve $\operatorname{det}\left([T]_{\gamma}-\lambda I\right)=0$ for some λ.

$$
\left(\begin{array}{ccc}
1-\lambda & 3 & 9 \\
1 & 3-\lambda & 4 \\
0 & 0 & 2-\lambda
\end{array}\right)
$$

Easily, one can get

$$
0=(2-\lambda)((1-\lambda)(3-\lambda)-3)=\lambda(2-\lambda)(\lambda-4)
$$

Then for each λ, we look for nonzero vectors v such that $[T]_{\gamma} v=\lambda v$. For $\lambda=0$, we have

$$
\left(\begin{array}{lll}
1 & 3 & 9 \\
1 & 3 & 4 \\
0 & 0 & 2
\end{array}\right) v=0 .
$$

One possible solution is $v=\left(\begin{array}{c}-3 \\ 1 \\ 0\end{array}\right)$. So we see that $-3+x$ is an eigenvector of T.
For $\lambda=2$, we have

$$
\left(\begin{array}{ccc}
-1 & 3 & 9 \\
1 & 1 & 4 \\
0 & 0 & 0
\end{array}\right) v=0
$$

One possible solution is $v=\left(\begin{array}{c}-3 \\ -13 \\ 4\end{array}\right)$. So we see that $-3-13 x+4 x^{2}$ is another eigenvector of T.
For $\lambda=4$, we have

$$
\left(\begin{array}{ccc}
-3 & 3 & 9 \\
1 & -1 & 4 \\
0 & 0 & -2
\end{array}\right) v=0
$$

One possible solution is $v=\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right)$. So we see that $1+x$ is another eigenvector of T.
Hence $\beta=\left\{-3+x,-3-13 x+4 x^{2}, 1+x\right\}$ is a basis for $P_{2}(\mathbb{R})$ consisting of eigenvectors of T. So $[T]_{\beta}$ is a diagonal matrix.

$$
[T]_{\beta}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 4
\end{array}\right)
$$

(h) Note that we are solving $T v=v$ for some λ and $\mathbf{0} \neq v \in M_{2 \times 2}(\mathbb{R})$.

$$
\left(\begin{array}{ll}
d & b \\
c & a
\end{array}\right)=T\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\lambda\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

Let $\gamma=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)\right\}$ be the standard basis for $M_{2 \times 2}(\mathbb{R})$. Then one can easily write down

$$
[T]_{\gamma}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Next, by solving $\operatorname{det}\left([T]_{\gamma}-\lambda I\right)=0$,

$$
\operatorname{det}\left(\begin{array}{cccc}
-\lambda & 0 & 0 & 1 \\
0 & 1-\lambda & 0 & 0 \\
0 & 0 & 1-\lambda & 0 \\
1 & 0 & 0 & -\lambda
\end{array}\right)=0
$$

one could get λ to be -1 or 1 .
For $\lambda=-1$, we have

$$
\left(\begin{array}{ll}
d & b \\
c & a
\end{array}\right)=\left(\begin{array}{ll}
-a & -b \\
-c & -d
\end{array}\right) .
$$

So one possible solution is $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
For $\lambda=1$, we have

$$
\left(\begin{array}{ll}
d & b \\
c & a
\end{array}\right)=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) .
$$

So $\left\{\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right\}$ are possible linearly independent solutions.
Together, we have a basis of eigenvectors of T for $M_{2 \times 2}(\mathbb{R})$.

$$
\beta=\left\{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

Moreover, we have

$$
[T]_{\beta}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

8. (a) Note that zero is an eigenvalue of T if and only if there exists some nonzero vector v such that $T v=0 v=0$. This is equivalent to say that there exists some nonzero vector

$$
v \in N(T-\lambda I)=N(T),
$$

that is $N(T) \neq\{\mathbf{0}\}$. So T is not invertible. In other words, T is invertible if and only if zero is not an eigenvalue of T.
(b) Again λ is an eigenvalue if and only if $T(v)=\lambda v$ for some nonzero vector v. As T is invertible, from the above, we see $\lambda \neq 0$. So this means

$$
\lambda v=\lambda^{-1} T^{-1}(T(v))=T^{-1} v
$$

which means that λ^{-1} is an eigenvalue of T^{-1}.
(c) i. First, we show that M is invertible if and only if $\lambda=0$ is not an eigenvalue. This is true because λ is an eigenvalue if and only if there exists some nonzero vector v such that

$$
M v=\lambda v
$$

But λ is just zero, this means there is some nontrivial solution to the system

$$
M v=0,
$$

that is M is not invertible. In order words, M is invertible if and only if zero is not an eigenvalue of M.
ii. Second, we prove that λ^{-1} is an eigenvalue of M^{-1}. As M is invertible, we have $\lambda \neq 0$ by the above argument. Since there is some nonzero vector v such that $M v=\lambda v$, hence we can multiply both sides by M^{-1} and λ^{-1}.

$$
\lambda^{-1} v=\lambda^{-1} M^{-1} M v=M^{-1} v
$$

This is equivalent to say that λ^{-1} is an eigenvalue of M^{-1}.
12. (a) Suppose A is similar to B, there exists some invertible matrix P such that

$$
A=P^{-1} B P
$$

with $\operatorname{det}(P) \neq 0$. Then

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =\operatorname{det}\left(P^{-1} B P-\lambda I\right) \\
& =\operatorname{det}\left(P^{-1} B P-P^{-1}(\lambda I) P\right) \\
& =\operatorname{det}\left(P^{-1}(B-\lambda I) P\right) \\
& =\operatorname{det}(P)^{-1} \operatorname{det}(B-\lambda I) \operatorname{det}(P) \\
& =\operatorname{det}(B-\lambda I)
\end{aligned}
$$

(b) Note the representations of a linear operator T are similar matrices. In order words $[T]_{\alpha}$ is similar to $[T]_{\beta}$ for any choices of bases α and β. (This is true as for bases α and $\beta,[I]_{\alpha}^{\beta}$ is invertible and $\left.[I]_{\beta}^{\alpha}=\left([I]_{\alpha}^{\beta}\right)^{-1}.\right)$
Then, by the above part, we see that the characteristic polynomial is well-defined.
Hence, the characteristic polynomial is independent of the choice of basis for V.
18. (a) Note that if B is invertible, we can "factor" B out from $A+c B$. Then, by considering $\operatorname{det}(A+c B)$, we have

$$
\operatorname{det}(A+c B)=\operatorname{det}(B) \operatorname{det}\left(B^{-1} A+x I\right)
$$

which is a polynomial of x over \mathbb{C}.
By the fundamental theorem of algebra, there must be a root of the polynomial, say c, such that $\operatorname{det}\left(B^{-1} A+c I\right)=0$.
Hence, there exists some scalar $c \in \mathbb{C}$ such that $\operatorname{det}(A+c B)=0$, in other words $A+c B$ is not invertible.
(b) From the above, we see that if B is invertible, then $A+c B$ will not be invertible for some $c \in \mathbb{C}$. So we choose B to be some nonzero matrix which is not invertible.

$$
B=\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

Let $A=\left(\begin{array}{ll}i & j \\ k & l\end{array}\right)$. Then

$$
A=\left(\begin{array}{ll}
i & j \\
k & l
\end{array}\right) \text { and } A+c B=\left(\begin{array}{cc}
i+c & j+c \\
k & l
\end{array}\right)
$$

are invertible for all $c \in \mathbb{C}$. In other words, we need $i l \neq j k$ and $(i+c) l \neq(j+c) k$. One possible choice is to choose $k=l \neq 0$, then any $i \neq j$ would give a feasible solution. So we may choose

$$
A=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

and A and $A+c B$ would be invertible for all $c \in \mathbb{C}$.
20. By definition, we have $\operatorname{det}(A-t I)=f(t)$. So when $t=0$, we get $\operatorname{det}(A)=$ $f(0)=a_{0}$. In other words, A is invertible if and only if $a_{0} \neq 0$.
21. (a) Let's prove main statement by induction.

For $n=2$, we have $f(t)=\operatorname{det}(A-t I)=\left(A_{11}-t\right)\left(A_{22}-t\right)-A_{12} A_{21}$. As $A_{12} A_{21}$, a constant, is a polynomial of 0 degree, the statement is true for $n=2$.

Assume the statement is true for $n=k-1$. We prove the statement for $n=k$. First, expand the determinant along the first row.

$$
\operatorname{det}(A-t I)=\left(A_{11}-t\right) \operatorname{det}\left(\tilde{A}_{11}-t \tilde{I}\right)+\sum_{j=2}^{n}(-1)^{1+j} A_{1 j} \operatorname{det}\left(B_{1 j}\right)
$$

(Here \tilde{I} is just $I_{(n-1) \times(n-1)}$.)

$$
\left(\begin{array}{ccccc}
A_{11}-t & A_{12} & A_{13} & \cdots & A_{1 n} \\
A_{21} & A_{22}-t & A_{23} & \cdots & A_{2 n} \\
A_{31} & A_{32} & A_{33}-t & \cdots & A_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
A_{n 1} & A_{n 2} & A_{n 3} & \cdots & A_{n n}-t
\end{array}\right)
$$

We observe that the first columns of each $B_{1 j}$ is independent of t. So we can expand the determinant along the first row.

$$
\operatorname{det}\left(B_{1 j}\right)=\sum_{k=1}^{n-1}\left(B_{1 j}\right)_{i k} \operatorname{det}\left(\widetilde{\left(B_{1 j}\right)_{i k}}\right)
$$

Note that ${\widetilde{\left(B_{1 j}\right)_{i k}}}^{\text {is }}$ an $(n-2) \times(n-2)$ matrix with at most one entry involving $t, \operatorname{det}\left(\widetilde{\left(B_{1 j}\right)_{i k}}\right)$ is a polynomial in t of degree not greater than $n-2^{\dagger}$, so is $\operatorname{det}\left(B_{1 j}\right)$. So the second part of $\operatorname{det}(A-t I)$ is a polynomial of degree at most $n-2$.
The first part follows easily from the induction hypothesis. We have

$$
\operatorname{det}\left(\tilde{A}_{11}-t \tilde{I}\right)=\left(A_{22}-t\right) \cdots\left(A_{n n}-t\right)+q(t)
$$

where $q(t)$ is a polynomial of degree at most $n-2$.
Hence, we get

$$
\begin{aligned}
\operatorname{det}(A-t I)= & \left(A_{11}-t\right)\left(A_{22}-t\right) \cdots\left(A_{n n}-t\right) \\
& +\underbrace{q(t)+\sum_{j=2}^{n}(-1)^{1+j} A_{1 j} \operatorname{det}\left(B_{1 j}\right)}_{p(t)},
\end{aligned}
$$

where $p(t)$ is a polynomial of degree at most $n-2$. The statement then follows by induction.
\dagger We claim that if $B \in M_{n \times n}(\mathbb{R})$ is a matrix such that in each row, at most one entry involves variable t, then $\operatorname{det}(B)$ is a polynomial in t of degree not greater than n.
When $n=1$, this is obviously true.

Suppose the claim holds for $n=k-1$. When $n=k$, we note that, by expanding the determinant along some row,

$$
\operatorname{det}(B)=\sum_{j=1}^{n} B_{i j} \operatorname{det}\left(\tilde{B}_{i j}\right)
$$

for some i. It is easy to see that $\tilde{B}_{i j}$ is a matrix with at most one entry involving t in each row. So, by induction hypothesis, $\operatorname{det}\left(\tilde{B}_{i j}\right)$ is a polynomial in t with degree not greater than $n-1$.
As a result $\operatorname{det}(B)$ is a polynomial in t with degree not greater than n. Hence, by induction, the claim is true.
(b) From the Exercise 20, we have

$$
f(t)=(-1)^{n} t^{n}+a_{n-1} t^{n-1}+\cdots+a_{1} t+a_{0}
$$

From the above part, we have

$$
\begin{aligned}
f(t) & =\left(A_{11}-t\right)\left(A_{22}-t\right) \cdots\left(A_{n n}-t\right)+q(t) \\
& =(-1)^{n} t^{n}+\left(A_{11}+A_{22}+\cdots+A_{n n}\right)(-1)^{n-1} t^{n-1}+r(t),
\end{aligned}
$$

where $r(t)$ are terms of degree at most $n-2$.
Hence, we see that

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}=(-1)^{n-1} a_{n-1}
$$

5.2

2. (e) First, we look at the characteristic polynomial of A.

$$
\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 0 & 1 \\
1 & -\lambda & -1 \\
0 & 1 & 1-\lambda
\end{array}\right)=0
$$

We then get

$$
-\lambda^{3}+\lambda^{2}-\lambda+1=(1-\lambda)\left(\lambda^{2}+1\right)=0,
$$

which does not split in \mathbb{R}. So we conclude that A is not diagonalizable.
3. (c) Let γ be the standard basis for \mathbb{R}^{2}. Then one can easily write down

$$
[T]_{\gamma}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 2
\end{array}\right)
$$

Then we see that the characteristic polynomial of T, which is the same as that of $[T]_{\gamma}$, does not split over \mathbb{R}.

$$
\operatorname{det}\left(\begin{array}{ccc}
-\lambda & 1 & 0 \\
-1 & -\lambda & 0 \\
0 & 0 & 2-\lambda
\end{array}\right)=(2-\lambda)\left(\lambda^{2}+1\right)=0
$$

Hence, T is not diagonalizable over \mathbb{R}.
12. (a) Let E_{λ} denotes the eigenspace of T corresponding to λ and $F_{\lambda^{-1}}$ denotes the eigenspace of T^{-1} corresponding to λ^{-1}.
Recall that for any eigenvalue λ of T, λ^{-1} is an eigenvalue of T^{-1}. So for any $v \in E_{\lambda}$, it is an eigenvector of T. Then it is an eigenvector of T^{-1}, which means $v \in F_{\lambda^{-1}}$.
Similarly, one can show $v \in F_{\lambda^{-1}}$ implies $v \in E_{\lambda}$.
Hence, $E_{\lambda}=F_{\lambda^{-1}}$.
(b) If T is diagonalizable, then there exists a basis β for V consisting of eigenvectors of T. As T is invertible, β is also a basis for V consisting of eigenvectors of T^{-1}.
Hence, T^{-1} is also diagonalizable.

