
Week 1

1.1 The Real Vector Space Rn
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We call an element of Rn a vector, typically denoted by a symbol of the form
~v.

The vector whose entries are all zero is called the zero vector. We denote it
by ~0.

1.1.1 Important Properties of Rn

• Addition Law
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• Scalar Multiplication For � 2 R,
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The vectors:

~e
1

=

0

B

B

B

B

B

@

1

0

0

...
0

1

C

C

C

C

C

A

,~e
2

=

0

B

B

B

B

B

@

0

1

0

...
0

1

C

C

C

C

C

A

, . . .~e
n

=

0

B

B

B

B

B

@

0

0

...
0

1

1

C

C

C

C

C

A

form a basis of Rn, in the sense that every vector of Rn may be written uniquely
as a linear combination of them:

0

B

B

B

@

v
1

v
2

...
v
n

1

C

C

C

A

= v
1

0

B

B

B

B

B

@

1

0

0

...
0

1

C

C

C

C

C

A

+ v
2

0

B

B

B

B

B

@

0

1

0

...
0

1

C

C

C

C

C

A

+ · · ·+ v
n

0

B

B

B

B

B

@

0

0

...
0

1

1

C

C

C

C

C

A

1.1.2 Linear Transformations
A map L : Rn ! Rm is called a linear transformation (over R) if:

• For all ~v 2 Rn, � 2 R, we have

L(�~v) = �L(~v),

and

• For all ~v, ~w 2 Rn, we have:

L(~v + ~w) = L(~v) + L(~w).

In particular, a linear transformation L : Rn �! Rm must map the zero vector
in Rn to the zero vector in Rm, since:

L(~0Rn
) = L(0 ·~0Rn

) = 0L(~0Rn
) =

~
0Rm .

Examples:

• Rotation of R2 about the origin by a fixed angle.

• Reflection of R3 over the xy-plane.
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Given a linear transformation L : Rn ! Rm, since every ~v 2 Rn may be
written as v
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, we have:
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In other words, L is uniquely determined by where it sends the basis vectors
~e
1

, . . . ,~e
n

. All information about L is captured by the following m⇥ n matrix:
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It is an array of real numbers with m rows and n columns, where the i-th column
is the vector L(~e

i

) in Rm.
Given a m⇥ n matrix:
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We define the multiplication of A with ~v =
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as follows:
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Fact: If L is the m ⇥ n matrix which corresponds to a linear transformation
L : Rn ! Rm, then for all ~v 2 Rn, we have:

L(~v) = L~v.

Exercise. Given an m⇥ n matrix A, the map A : Rn �! Rm, defined by:

A(~v) = A~v, ~v 2 Rn,

is a linear transformation.
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Exercise. Given two m⇥n matrices A and B, A~v = B~v for all ~v 2 Rn if and
only if A = B, i.e.:

A
ij

= B
ij

, 1  i  m, 1  j  n.

Corollary. Each linear transformation from Rn to Rm corresponds to the mul-
tiplication by a unique m⇥ n matrix, and vice versa.

Example. Consider the map L : R2 ! R2 defined by:

L
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Exercise. L is a linear transformation.
The matrix corresponding to L is the 2⇥ 2 matrix:
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We see that indeed:
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1.1.3 Algebraic Operations on Matrices
• Given any m⇥ n matrix A = (A

ij

) and scalar � 2 R, we define the m⇥ n
matrix �A = ((�A)

ij

) as follows:

(�A)
ij

= � · A
ij

, 1  i  m, 1  j  n.

• Given two m ⇥ n matrices A = (A
ij

), B = (B
ij

), we define their sum
A+B = ((A+B)

ij

) as follows:

(A+B)

ij

= A
ij

+B
ij

, 1  i  m, 1  j  n.

• Given an m ⇥ n matrix C and an n ⇥ l matrix D, the product CD is the
m⇥ l matrix CD = ((CD)

ij

) defined by:

(CD)

ij

=

n
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, 1  i  m, 1  j  l.
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If we view D as an array of l column vectors in Rn:
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Note: Given an m⇥ n matrix C and an n0 ⇥ l matrix D, the product CD is
defined IF AND ONLY IF n = n0.
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On the other hand:
BA =
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Exercise. If C is an m ⇥ n matrix corresponding to a linear map C : Rn �!
Rm, and D is a n ⇥ l matrix corresponding to a linear map D : Rl �! Rn, then
the product CD is the m ⇥ l matrix corresponding to the composition of linear
maps:

C �D : Rl �! Rm.
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