Week 1

1.1 The Real Vector Space \mathbb{R}^{n}

$$
n \in \mathbb{N}, \quad \mathbb{R}^{n}=\left\{\left.\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \right\rvert\, x_{i} \in \mathbb{R}\right\}
$$

We call an element of \mathbb{R}^{n} a vector, typically denoted by a symbol of the form \vec{v}.

The vector whose entries are all zero is called the zero vector. We denote it by $\overrightarrow{0}$.

1.1.1 Important Properties of \mathbb{R}^{n}

- Addition Law

$$
\begin{gathered}
\vec{v}=\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right), \quad \vec{w}=\left(\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right) \\
\vec{v}+\vec{w}=\left(\begin{array}{c}
v_{1}+w_{1} \\
v_{2}+w_{2} \\
\vdots \\
v_{n}+w_{n}
\end{array}\right)
\end{gathered}
$$

- Scalar Multiplication For $\lambda \in \mathbb{R}$,

$$
\lambda\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
\lambda v_{1} \\
\lambda v_{2} \\
\vdots \\
\lambda v_{n}
\end{array}\right)
$$

The vectors:

$$
\vec{e}_{1}=\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right), \vec{e}_{2}=\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right), \ldots \vec{e}_{n}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

form a basis of \mathbb{R}^{n}, in the sense that every vector of \mathbb{R}^{n} may be written uniquely as a linear combination of them:

$$
\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)=v_{1}\left(\begin{array}{c}
1 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)+v_{2}\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)+\cdots+v_{n}\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right)
$$

1.1.2 Linear Transformations

A map $\mathcal{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called a linear transformation (over \mathbb{R}) if:

- For all $\vec{v} \in \mathbb{R}^{n}, \lambda \in \mathbb{R}$, we have

$$
\mathcal{L}(\lambda \vec{v})=\lambda \mathcal{L}(\vec{v}),
$$

and

- For all $\vec{v}, \vec{w} \in \mathbb{R}^{n}$, we have:

$$
\mathcal{L}(\vec{v}+\vec{w})=\mathcal{L}(\vec{v})+\mathcal{L}(\vec{w}) .
$$

In particular, a linear transformation $\mathcal{L}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$ must map the zero vector in \mathbb{R}^{n} to the zero vector in \mathbb{R}^{m}, since:

$$
\mathcal{L}\left(\overrightarrow{0}_{\mathbb{R}^{n}}\right)=\mathcal{L}\left(0 \cdot \overrightarrow{0}_{\mathbb{R}^{n}}\right)=0 \mathcal{L}\left(\overrightarrow{0}_{\mathbb{R}^{n}}\right)=\overrightarrow{0}_{\mathbb{R}^{m}} .
$$

Examples:

- Rotation of \mathbb{R}^{2} about the origin by a fixed angle.
- Reflection of \mathbb{R}^{3} over the $x y$-plane.

Given a linear transformation $\mathcal{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, since every $\vec{v} \in \mathbb{R}^{n}$ may be written as $v_{1} \vec{e}_{1}+\cdots v_{n} \overrightarrow{e_{n}}$, we have:

$$
\mathcal{L}(\vec{v})=v_{1} \mathcal{L}\left(\vec{e}_{1}\right)+\cdots v_{n} \mathcal{L}\left(\vec{e}_{n}\right)
$$

In other words, \mathcal{L} is uniquely determined by where it sends the basis vectors $\vec{e}_{1}, \ldots, \vec{e}_{n}$. All information about \mathcal{L} is captured by the following $m \times n$ matrix:

$$
L=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathcal{L}\left(\vec{e}_{1}\right) & \mathcal{L}\left(\vec{e}_{2}\right) & \cdots & \mathcal{L}\left(\vec{e}_{n}\right) \\
\mid & \mid & & \mid
\end{array}\right)
$$

It is an array of real numbers with m rows and n columns, where the i-th column is the vector $\mathcal{L}\left(\vec{e}_{i}\right)$ in \mathbb{R}^{m}.

Given a $m \times n$ matrix:

$$
A=\left(A_{i j}\right)=\left(\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 n} \\
A_{21} & A_{22} & \cdots & A_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m 1} & A_{m 2} & \cdots & A_{m n}
\end{array}\right)
$$

We define the multiplication of A with $\vec{v}=\left(\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right)$ as follows:

$$
A \vec{v}=\left(\begin{array}{c}
\sum_{k=1}^{n} A_{1 k} v_{k} \\
\sum_{k=1}^{n=1} A_{2 k} v_{k} \\
\vdots \\
\sum_{k=1}^{n} A_{m k} v_{k}
\end{array}\right)
$$

Fact: If L is the $m \times n$ matrix which corresponds to a linear transformation $\mathcal{L}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then for all $\vec{v} \in \mathbb{R}^{n}$, we have:

$$
\mathcal{L}(\vec{v})=L \vec{v} .
$$

Exercise. Given an $m \times n$ matrix A, the map $\mathcal{A}: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{m}$, defined by:

$$
\mathcal{A}(\vec{v})=A \vec{v}, \quad \vec{v} \in \mathbb{R}^{n},
$$

is a linear transformation.

Exercise. Given two $m \times n$ matrices A and $B, A \vec{v}=B \vec{v}$ for all $\vec{v} \in \mathbb{R}^{n}$ if and only if $A=B$, i.e.:

$$
A_{i j}=B_{i j}, \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

Corollary. Each linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} corresponds to the multiplication by a unique $m \times n$ matrix, and vice versa.

Example. Consider the map $\mathcal{L}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by:

$$
\mathcal{L}\left(\binom{x}{y}\right)=\binom{x+2 y}{-y}
$$

Exercise. \mathcal{L} is a linear transformation.
The matrix corresponding to \mathcal{L} is the 2×2 matrix:

$$
L=\left(\mathcal{L}\left(\binom{1}{0}\right) \quad \mathcal{L}\left(\binom{0}{1}\right)\right)=\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right)
$$

We see that indeed:

$$
L\binom{x}{y}=\left(\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right)\binom{x}{y}=\binom{x+2 y}{-y}=\mathcal{L}\left(\binom{x}{y}\right)
$$

1.1.3 Algebraic Operations on Matrices

- Given any $m \times n$ matrix $A=\left(A_{i j}\right)$ and scalar $\lambda \in \mathbb{R}$, we define the $m \times n$ matrix $\lambda A=\left((\lambda A)_{i j}\right)$ as follows:

$$
(\lambda A)_{i j}=\lambda \cdot A_{i j}, \quad 1 \leq i \leq m, 1 \leq j \leq n .
$$

- Given two $m \times n$ matrices $A=\left(A_{i j}\right), B=\left(B_{i j}\right)$, we define their sum $A+B=\left((A+B)_{i j}\right)$ as follows:

$$
(A+B)_{i j}=A_{i j}+B_{i j}, \quad 1 \leq i \leq m, 1 \leq j \leq n
$$

- Given an $m \times n$ matrix C and an $n \times l$ matrix D, the product $C D$ is the $m \times l$ matrix $C D=\left((C D)_{i j}\right)$ defined by:

$$
(C D)_{i j}=\sum_{k=1}^{n} C_{i k} D_{k j}, \quad 1 \leq i \leq m, 1 \leq j \leq l .
$$

If we view D as an array of l column vectors in \mathbb{R}^{n} :

$$
D=\left(\begin{array}{ccc}
\mid & & \mid \\
\overrightarrow{d_{1}} & \ldots & \overrightarrow{d_{l}} \\
\mid & & \mid
\end{array}\right)
$$

then

$$
C D=\left(\begin{array}{ccc}
\mid & & \mid \\
C \vec{d}_{1} & \cdots & C \vec{d}_{l} \\
\mid & & \mid
\end{array}\right) .
$$

Note: Given an $m \times n$ matrix C and an $n^{\prime} \times l$ matrix D, the product $C D$ is defined IF AND ONLY IF $n=n^{\prime}$.

Example. Let $A=\left(\begin{array}{cc}3 & -2 \\ 2 & 4 \\ 1 & -3\end{array}\right)$ and $B=\left(\begin{array}{ccc}-2 & 1 & 3 \\ 4 & 1 & 6\end{array}\right)$, then:

$$
A B=\left(\begin{array}{cc}
3 & -2 \\
2 & 4 \\
1 & -3
\end{array}\right)\left(\begin{array}{ccc}
-2 & 1 & 3 \\
4 & 1 & 6
\end{array}\right)
$$

$$
=\left(\begin{array}{lll}
3(-2)-2(4) & 3(1)-2(1) & 3(3)-2(6) \\
2(-2)+4(4) & 2(1)+4(1) & 2(3)+4(6) \\
1(-2)-3(4) & 1(1)-3(1) & 1(3)-3(6)
\end{array}\right)=\left(\begin{array}{ccc}
-14 & 1 & -3 \\
12 & 6 & 30 \\
-14 & -2 & -15
\end{array}\right)
$$

On the other hand:

$$
B A=\left(\begin{array}{cc}
-1 & -1 \\
20 & -22
\end{array}\right) \neq A B
$$

Exercise. If C is an $m \times n$ matrix corresponding to a linear map $\mathcal{C}: \mathbb{R}^{n} \longrightarrow$ \mathbb{R}^{m}, and D is a $n \times l$ matrix corresponding to a linear map $\mathcal{D}: \mathbb{R}^{l} \longrightarrow \mathbb{R}^{n}$, then the product $C D$ is the $m \times l$ matrix corresponding to the composition of linear maps:

$$
\mathcal{C} \circ \mathcal{D}: \mathbb{R}^{l} \longrightarrow \mathbb{R}^{m} .
$$

