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Topics  

 Language of Differentials   

 By Parts 

 Integration by Substitution/Trig. Sub./t-substitution (optional) 

 Partial Fraction 

 Fundamental Theorem of Calculus 

(The red-colored items have not been covered yet) 

 

Introduction 

The goal now is to find systematic methods to solve (*) 𝐹′(𝑥) = 𝑓(𝑥) or 

equivalently, 𝐹(𝑥) = ∫ 𝑓(𝑥)𝑑𝑥 (**) 

 

The equivalence of (*) and (**) comes from the following Language of Differentials. 

 

As mentioned above, for any differentiable function 𝑢(𝑥)   one can “formally” 

define 

𝑑𝑢(𝑥) = 𝑢′(𝑥)𝑑𝑥 

 

Some Examples of Differentials 

1) 

𝑑𝑥𝑛 = 𝑛𝑥𝑛−1𝑑𝑥 

2) 𝑑 (
sin(4𝑥)

𝑥
) = (

𝑥(
𝑑 sin(4𝑥)

𝑑𝑥
)−sin(4𝑥)(

𝑑𝑥

𝑑𝑥
 )

𝑥2 ) 𝑑𝑥 = (
4𝑥 cos 4𝑥−sin 4𝑥

𝑥2 ) 𝑑𝑥 

 

General Rules for Differentials (we omit the variable in the functions for simplicity) 

𝑑(𝑓 + 𝑔) = 𝑑𝑓 + 𝑑𝑔 

𝑑(𝑘𝑓) = 𝑘𝑑𝑓, 𝑘 is a constant 

𝑑(𝑓𝑔) = 𝑓𝑑𝑔 + 𝑔𝑑𝑓 

𝑑 (
𝑓

𝑔
) =

𝑔𝑑𝑓 − 𝑓𝑑𝑔

𝑔2
 

etc. 

 

Using this “language of differentials” it’s quite easy to write down some “methods” 

to compute indefinite integrals. 

 



Method of Integration by Parts 

Some of you might have notice that we haven’t discussed the rule for finding the 

“indefinite integrals of (product) of two functions”. Why? The reason is because it is 

quite involved. 

 

The rule is known as “Integration by parts” which is (in most concise writing): 

∫ 𝑓𝑑𝑔 = 𝑓𝑔 − ∫ 𝑔𝑑𝑓 

 

or ∫ 𝑓(𝑥)𝑑𝑔(𝑥) = 𝑓(𝑥)𝑔(𝑥) − ∫ 𝑔(𝑥)𝑑𝑓(𝑥), or ∫ 𝑓(𝑥)𝑑𝑔(𝑥) + 𝑔(𝑥)𝑑𝑓(𝑥) =

𝑓(𝑥)𝑔(𝑥) , or ∫ 𝑓(𝑥)𝑔′(𝑥)𝑑𝑥 + 𝑔(𝑥)𝑓′(𝑥)𝑑𝑥 = 𝑓(𝑥)𝑔(𝑥) . 

 

Examples on how to apply Integration by parts 

1) Find ∫ 𝑥𝑒𝑥𝑑𝑥. 

The idea is to “read” this as ∫ 𝑓𝑑𝑔. Which function can we choose for 𝑓(𝑥), for 

𝑑𝑔(𝑥)? 

Many choices: (Choice 1) 𝑓(𝑥) = 𝑥, 𝑔′(𝑥)𝑑𝑥 = 𝑒𝑥𝑑𝑥 (or 𝑑𝑔(𝑥) = 𝑑𝑒𝑥). 

  

This choice gives ∫ 𝑥𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥 − ∫ 𝑒𝑥𝑑𝑥 = 𝑥𝑒𝑥 − 𝑒𝑥 + 𝐶 

Question: Try (Choice 2) 𝑓(𝑥) = 𝑒𝑥, 𝑔′(𝑥)𝑑𝑥 = 𝑥𝑑𝑥.  What would this choice lead 

to? 

 

2) Find 𝐼 = ∫ 𝑒𝑥 sin 𝑥 𝑑𝑥. 

Choices: (1) 𝑓(𝑥) = 𝑒𝑥, 𝑔′(𝑥)𝑑𝑥 = sin 𝑥 𝑑𝑥. This gives 𝑔(𝑥) = − cos 𝑥. Hence we 

have 𝐼 = 𝑓𝑔 − ∫ 𝑔𝑑𝑓 = −𝑒𝑥 cos  𝑥 − ∫ (− cos 𝑥) ⋅ 𝑒𝑥𝑑𝑥 = −𝑒𝑥 cos  𝑥 +

∫ cos 𝑥 𝑒𝑥𝑑𝑥 = − 𝑒𝑥 cos 𝑥 + ∫ 𝑒𝑥𝑑 sin 𝑥 

= −𝑒𝑥 cos 𝑥 + (𝑒𝑥 sin 𝑥 − ∫ sin 𝑥 𝑒𝑥𝑑𝑥) 

𝐼 = −𝑒𝑥 cos 𝑥 + 𝑒𝑥 sin 𝑥 − 𝐼 

Hence 𝐼 =
1

2
(−𝑒𝑥 cos 𝑥 + 𝑒𝑥 sin 𝑥) + 𝐶. 

 

3) Reduction Formula – this example is about “reduction formula”. 

(A reduction formula is a formula relating a more complicated integral to a less 

complicated one) 

Example: Find 𝐼𝑛 = ∫ 𝑥𝑛𝑒𝑥𝑑𝑥. 

Solution: 𝐼𝑛 = ∫ 𝑥𝑛𝑑𝑒𝑥  by choosing 𝑓(𝑥) = 𝑥𝑛 and 𝑑𝑔(𝑥) = 𝑑𝑒𝑥 

Using the formula ∫ 𝑓𝑑𝑔 = −∫ 𝑔𝑑𝑓 + 𝑓𝑔   we obtain 𝐼𝑛 = ∫ 𝑥𝑛𝑑𝑒𝑥 

= −∫ 𝑒𝑥𝑑𝑥𝑛 + 𝑥𝑛𝑒𝑥 = −∫ 𝑛𝑥𝑛−1𝑒𝑥𝑑𝑥 + 𝑥𝑛𝑒𝑥 = −𝑛𝐼𝑛−1 + 𝑥𝑛𝑒𝑥 

which relates 𝐼𝑛 to 𝐼𝑛−1. 



Note that when 𝑛 = 1, this is just our first example above. 

 

The Paradox 𝟎 = 𝟏 via Integration by Parts 

In the following, we will show that 0 = 1 by using integration by parts. This 

example shows that the constant is important. 

 

Example 

Let’s compute ∫
1

𝑥
 𝑑𝑥 by using integration by parts. To do this, we choose 𝑓(𝑥) =

1

𝑥
 

and 𝑑𝑔(𝑥) = 1 ⋅ 𝑑𝑥. Then we have ∫ 𝑓𝑑𝑔 = ∫
1

𝑥
𝑑𝑥 = −∫ 𝑔𝑑𝑓 + 𝑓𝑔 

= −∫ 𝑥𝑑(𝑥−1) + 𝑥(𝑥−1) = −∫ 𝑥(−𝑥−2)𝑑𝑥 + 1 = ∫
1

𝑥
  𝑑𝑥 + 1 

Cancelling the terms ∫
1

𝑥
𝑑𝑥 , we get 0 = 1. 

 

Remark: 

One explanation of this paradox is that the constant of indefinite integral is 

important. If we choose a suitable constant, the paradox can be resolved. 

 

We will see more explanations later. 

 

Explanation of the formula ∫ 𝒇𝒅𝒈 = −∫ 𝒈𝒅𝒇 + 𝒇𝒈 

 

First note that the formula is equivalent to ∫ (𝑓𝑑𝑔 + 𝑔𝑑𝑓) = 𝑓𝑔    (1) 

 

⇔ ∫ 𝑑(𝑓𝑔) = 𝑓𝑔 

To prove (1), we start from the product rule for differentiation, i.e. 

𝑓𝑔′ + 𝑓′𝑔=(𝑓𝑔)′ 

⇔ 𝑓
𝑑𝑔

𝑑𝑥
+ 𝑔

𝑑𝑓

𝑑𝑥
=  

𝑑(𝑓𝑔)

𝑑𝑥
 

  

⇔ 𝑓
𝑑𝑔

𝑑𝑥
𝑑𝑥 + 𝑔

𝑑𝑓

𝑑𝑥
𝑑𝑥 =  

𝑑(𝑓𝑔)

𝑑𝑥
𝑑𝑥 

⇔ ∫ 𝑓
𝑑𝑔

𝑑𝑥
𝑑𝑥 + ∫ 𝑔

𝑑𝑓

𝑑𝑥
𝑑𝑥 = ∫  

𝑑(𝑓𝑔)

𝑑𝑥
𝑑𝑥      (***) 

 



But now 𝑓
𝑑𝑔

𝑑𝑥
𝑑𝑥 = 𝑓𝑑𝑔,   𝑔

𝑑𝑓

𝑑𝑥
𝑑𝑥 = 𝑔𝑑𝑓,

𝑑(𝑓𝑔)

𝑑𝑥
𝑑𝑥 = 𝑑(𝑓𝑔), so (***) gives 

∫ 𝑓𝑑𝑔 + 𝑔𝑑𝑓 = 𝑓𝑔 

 

which is just (1) above, as was required to be proved. 

 

 

Other Methods of Computing ∫ 𝒇(𝒙)𝒅𝒙 

Substitution Method (Case 1. Simple Substitution) 

∫ (1 + 𝑥)100𝑑𝑥 

 

A straight-forward but tedious method to compute this indefinite integral is to 

expand (1 + 𝑥)100 and the compute them term by term. 

 

A much better method is to let 𝑢 = 1 + 𝑥 to get 𝑑𝑢 = (1 + 𝑥)′𝑑𝑥 = 𝑑𝑥 and 

hence 

∫ (1 + 𝑥)100𝑑𝑥 = ∫ 𝑢100𝑑𝑢 =
𝑢101

101
+ 𝐶 

Another Example 

Find ∫
𝑑𝑥

𝑥 ln 𝑥
,    𝑥 > 1 

Solution: The idea is to “see” that 
𝑑𝑥

𝑥
= 𝑑 ln 𝑥 . Hence we can let 𝑢 = ln 𝑥 which 

gives ∫
𝑑𝑥

𝑥 ln 𝑥
= ∫

𝑑𝑢

𝑢
= ln 𝑢 + 𝐶 = ln(ln 𝑥) + 𝐶. 

 

Some Theory 

The reason why the above method works is due to the Chain Rule (which we will not 

elaborate here). 

 

In general, in using the “substitution method”, the (indefinite) integral takes the 

form 

∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 

so that we can rewrite the term 𝑔′(𝑥)𝑑𝑥 as 𝑑𝑢 (after letting 𝑢 = 𝑔(𝑥)). Doing 

this, the integral ∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 becomes ∫ 𝑓(𝑢)𝑑𝑢,  which may be easier to 

compute. 

 

 



Examples (for ∫ 𝒇(𝒈(𝒙))𝒈′(𝒙)𝒅𝒙 = ∫ 𝒇(𝒖)𝒅𝒖) 

1) ∫
1

𝑥 ln 𝑥 
𝑑𝑥 = ∫

1

ln 𝑥

1

𝑥
𝑑𝑥 = ∫

1

ln 𝑥
𝑑(ln 𝑥) = ∫ 𝑓(𝑢)𝑑𝑢, where now 𝑓(𝑢) =

1

ln  𝑥
 

and 𝑢 = ln 𝑥. 

2) ∫ (1 + 𝑥2)7𝑥𝑑𝑥 

Now the term 𝑥𝑑𝑥 = 𝑑 (
𝑥2

2
) = (

1

2
) 𝑑𝑥2. We can now let 𝑢 = 𝑥2 and obtain  

∫ (1 + 𝑥2)7𝑥𝑑𝑥 = ∫ (1 + 𝑢)7 (
1

2
) 𝑑𝑢 = ⋯ 

 

Important Remark: 

In the above paragraph, we see that the function to be integrated is now  

𝑓(𝑔(𝑥))𝑔′(𝑥) 

In order that we can get ∫ 𝑓(𝑔(𝑥))𝑔′(𝑥)𝑑𝑥 (or equivalently, solve 𝐹′(𝑥) =

𝑓(𝑔(𝑥))𝑔′(𝑥)), this function 𝑓(𝑔(𝑥))𝑔′(𝑥) has to be continuous. 

 

Substitution Method (Case 2) Trigonometric Substitution Method 

A very important class of substitution is the “trig. sub.”. They are there mainly to 

deal with integrals involving (i) a square root sign, (ii) a quadratic term inside the 

square root. 

 

Example 

Find ∫
𝑑𝑥

√𝑎2−𝑥2
,   𝑎 > 0 

Main Idea: Completing square, i.e. to rewrite the expression inside the square root 

sign to become “something squared”. There are many ways to get this, one way is to 

let  𝑥 = 𝑎 sin 𝑡. 

Doing this, we obtain   𝑥 = 𝑎 sin 𝑡    𝑔𝑖𝑣𝑒𝑠     𝑑𝑥 = 𝑎 cos 𝑡 𝑑𝑡 

Also, we have √𝑎2 − 𝑥2 = √𝑎2 − 𝑎2 sin2 𝑡 = 𝑎| cos 𝑡| 

  

Therefore 
1

√𝑎2−𝑥2
=

1

𝑎| cos 𝑡|
 

And 
𝑑𝑥

√𝑎2−𝑥2
=

𝑎 cos 𝑡 𝑑𝑡

𝑎| cos 𝑡|
=? 

Supposing the case “cos 𝑡 > 0” is true, then we have 

 

∫
𝑑𝑥

√𝑎2 − 𝑥2
= ∫ 𝑑𝑡 = 𝑡 + 𝐶 = arcsin (

𝑥

𝑎
) + 𝐶 



Remark: 

This question already reveals to us that “blind” use of “formal” computation is not 

enough, one sometimes have to think about the domain of integration. (A correct 

choice of “domain of integration (More later)” will lead to | cos 𝑡| = cos 𝑡 

 

Another Example 

Find ∫
1

1+𝑥+𝑥2 𝑑𝑥. 

 

First we have to rewrite it in the form ∫
𝑑𝑢

𝑎2+𝑏2𝑢2
 for some suitable choices of 𝑎 

and  𝑏. 

 

How to do it? 

Completing square again. 1 + 𝑥 + 𝑥2 = (
3

4
) + (𝑥 + (

1

2
))

2

= (
√3

2
)

2

+ (𝑥 + (
1

2
))

2

   

Now we can let 𝑢 = 𝑥 + (
1

2
) and get 

1

1+𝑥+𝑥2 𝑑𝑥 =
1

(
√3

2
)

2

+𝑢2

𝑑𝑢. 

 

Next, we perform another completing square to make the denominator a “complete 

square”.  

 

To do this, we let 𝑢 =
√3

2
tan 𝜃, which leads to 𝑑𝑢 =

√3

2
sec2 𝜃 𝑑𝜃. 

On the other hand, (
√3

2
)

2

+ 𝑢2 = (
√3

2
)

2

(1 + tan2 𝜃) = (
√3

2
)

2

sec2 𝜃 

Putting everything together, we have  
𝑑𝜃

√3

2

 

 

Hence ∫
1

(
√3

2
)

2

+𝑢2

𝑑𝑢 = ∫
𝑑𝜃

√3

2

=
2

√3
𝜃 + 𝐶 =

2

√3
arctan

2

√3
𝑢 + 𝐶 

 

=
2

√3
arctan

2

√3
(𝑥 +

1

2
) + 𝐶 

 


