THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 6

Theorem (Intermeidate value theorem)

Suppose $f(x)$ is a continuous function on a closed and bounded interval $[a, b]$. Then for any real number c between $f(a)$ and $f(b)$ (exclusive), there exists $\zeta \in(a, b)$ such that $f(\zeta)=c$.

Theorem (Extreme value theorem)
Suppose $f(x)$ is a continuous function on a closed and bounded interval $[a, b]$. Then there exists $\alpha, \beta \in[a, b]$ such that for any $x \in[a, b]$, we have

$$
f(\alpha) \leq f(x) \leq f(\beta)
$$

Theorem (Mean value theorem)

Suppose a, b are real numbers and $a<b$.

1. Lagrange's: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Then there exists $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

2. Cauchy's: Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x) \neq 0 \forall x \in(a, b)$. Then there exists $\xi \in(a, b)$ such that

$$
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Definition (Taylor Polynomial)

Let $f(x)$ be a function such that the n-th derivative exists at $x=a$. The Taylor polynomial of degree n of $f(x)$ at $x=a$ is the polynomial

$$
p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Definition (Taylor series)

Let $f(x)$ be an infinitely differentiable function. The Taylor series of $f(x)$ at $x=a$ is the infinite power series

$$
T(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}+\cdots=\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

Theorem (Radius of convergence) For any power series

$$
S(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots
$$

There exists $R \in[0,+\infty]$ called radius of convergence such that

1. $S(x)$ is absolutely convergent for any $|x|<R$ and divergent for any $|x|>R$. For $|x|=R, S(x)$ may or may not be convergent.
2. When $S(x)$ is considered as a function of x, it is differentiable on $(-R, R)$ and its derivative is

$$
S^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=a_{1}+2 a_{2} x+\cdots
$$

Problems that may be demonstrated in class :

Q1. By using mean value theorem, show that

$$
|\cos x-\cos y| \leq|x-y|
$$

for all $x, y \in \mathbb{R}$
Q2. Let $a, b \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)>0$ for all $x \in[a, b]$. Show that f is increasing on (a, b) by using mean value theorem.
Q3. Consider the equation $\cos x=2 x$.
(a) Show that the equation has at least 1 solution.
(b) Show that the equation has at most 1 solution.

Q4. Let $f:[a, b] \rightarrow \mathbb{R} \backslash \mathbb{Q}$ be continuous. Prove that f must be a constant function.
Q5. Let $f:[0,1] \rightarrow(0,1)$ be a continuous function. Show that f has a fixed point in $(0,1)$. i.e.

$$
\exists c \in(0,1) \text { such that } f(c)=c
$$

Q6. (a) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0$. Prove that f is bounded on \mathbb{R} and attains either a maximum or minimum on \mathbb{R}.
(b) Give an example such that f attains either maximum or minimum, but not both.

Q7. Find the Taylor polynomial of degree 4 of the following functions at $x=0$
(a) $\ln (1+x)$
(b) $(1+x) \ln (1+x)$

Q8. (a) Find the Taylor series of $f(x)=\frac{1}{1-x}$
(b) What is the radius of convergence, R ?
(c) Is the Taylor series absolutely convergent when $x=R$ and $x=-R$ respectively?

