THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 4 Solutions

Problems that may be demonstrated in class :

Q1. Find the limit of the following expressions.
(a) $\lim _{x \rightarrow 0} \frac{\ln \left(x^{4}+x^{2}+3\right)}{\ln \left(x^{6}+6 x^{4}+9\right)}$
(b) $\lim _{x \rightarrow \infty} \frac{\ln \left(x^{4}+x^{2}+3\right)}{\ln \left(x^{6}+6 x^{4}+9\right)}$
(c) $\lim _{x \rightarrow \infty} e^{-x} \tanh x$
(d) $\lim _{x \rightarrow 0} \frac{(\ln (\sec (x)))^{2}}{\cos (\sin (\tan (x)))}$
(e) $\lim _{x \rightarrow 0} \frac{\sin \left(e^{2 x^{2}}-1\right)}{e^{2 x^{2}}-1}$
(f) $\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right)$

Q2. Determine where the function $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is continuous.
Q3. Given that the function $f(x)= \begin{cases}e^{-\frac{1}{x}} \sin \left(\cos \frac{1}{x}\right) & \text { if } x>0 \\ a & \text { if } x=0 \\ b e^{e^{\sin \frac{1}{x}}} & \text { if } x<0\end{cases}$ where $a, b \in \mathbb{R}$. Find the value of a and b.
Q4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=f(x / 2)$ for all real number x. Show that $f(x)=f(0)$ for all real number x.
Q5. Show that every (univariate) polynomial of odd degree (with real coefficients) has a root in real numbers.
Q6. Consider $f(x)=\left\{\begin{array}{ll}\sqrt[2016]{x} \sin \left(2 e^{1 / x}\right)+1 & \text { if } x>0 \\ 1 & \text { if } x \leq 0\end{array}\right.$.
(a) Show that f is a continuous function on \mathbb{R}.
(b) Prove that f has a fixed point in the interval $[0,1]$. (That is, there exists $x \in[0,1]$ such that $f(x)=x)$

Solutions: Q1. (a) Notice that $\lim _{x \rightarrow 0} x^{4}+x^{2}+3=3>0$ and $\lim _{x \rightarrow 0} x^{6}+6 x^{4}+9=9>0$. So we can use the continuity of \ln to get $\lim _{x \rightarrow 0} \ln \left(x^{4}+x^{2}+3\right)=\ln 3$ and $\lim _{x \rightarrow 0} \ln \left(x^{6}+6 x^{4}+9\right)=\ln 9 \neq 0$. Therefore we have

$$
\lim _{x \rightarrow 0} \frac{\ln \left(x^{4}+x^{2}+3\right)}{\ln \left(x^{6}+6 x^{4}+9\right)}=\frac{\ln 3}{\ln 9}=\frac{1}{2}
$$

(b) Since we are looking for limit when x tends to infinity, we may just consider $x>1$ and sufficiently large. So

$$
\ln \left(x^{4}+x^{2}+3\right)=\ln \left(x^{4}\right)+\ln \left(1+x^{-2}+3 x^{-4}\right)=4 \ln x+\ln \left(1+x^{-2}+3 x^{-4}\right)
$$

and
$\ln \left(x^{6}+6 x^{4}+9\right)=\ln \left(x^{6}\right)+\ln \left(1+6 x^{-2}+9 x^{-6}\right)=6 \ln x+\ln \left(1+6 x^{-2}+9 x^{-6}\right)$.
Now we have

$$
\frac{\ln \left(x^{4}+x^{2}+3\right)}{\ln \left(x^{6}+6 x^{4}+9\right)}=\frac{4 \ln x+\ln \left(1+x^{-2}+3 x^{-4}\right)}{6 \ln x+\ln \left(1+6 x^{-2}+9 x^{-6}\right)}=\frac{4+\frac{\ln \left(1+x^{-2}+3 x^{-4}\right)}{\ln x}}{6+\frac{\ln \left(1+6 x^{-2}+9 x^{-6}\right)}{\ln x}}
$$

Now use the fact that $\lim _{x \rightarrow \infty} x^{-1}=0, \lim _{x \rightarrow \infty} \frac{1}{\ln x}=0$ and \ln is continuous, we have $\lim _{x \rightarrow \infty} \frac{\ln \left(1+x^{-2}+3 x^{-4}\right)}{\ln x}=\ln 1 \cdot 0=0$ and $\lim _{x \rightarrow \infty} \frac{\ln \left(1+6 x^{-2}+9 x^{-6}\right)}{\ln x}=$ $\ln 1 \cdot 0=0$. Therefore we have

$$
\lim _{x \rightarrow \infty} \frac{\ln \left(x^{4}+x^{2}+3\right)}{\ln \left(x^{6}+6 x^{4}+9\right)}=\frac{4}{6}=\frac{2}{3} .
$$

(c) Knowing that $|\tanh x| \leq 1$ for all real number x and $\lim _{x \rightarrow \infty} e^{-x}=0$, the limit is 0 .
(d) This is a simple application of continuity. All functions that appear are continuous in some range. We have $\lim _{x \rightarrow 0} \sec (x)=1, \lim _{x \rightarrow 1} \ln x=0, \lim _{x \rightarrow 0} \tan x=$ $0, \lim _{x \rightarrow 0} \sin x=0$, and $\lim _{x \rightarrow 0} \cos x=1$. So the limit is 0 .
(e) Using the fact that $e^{2 x^{2}}-1$ is continuous at $x=0$ and $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$, we have $\lim _{x \rightarrow 0} e^{2 x^{2}}-1=e^{0}-1=0$ and $\lim _{x \rightarrow 0} \frac{\sin \left(e^{2 x^{2}}-1\right)}{e^{2 x^{2}}-1}=1$.
(f) Since for $x \neq 0\left|\cos \left(\frac{1}{x}\right)\right| \leq 1$ and $\lim _{x \rightarrow 0} x=0$, we have

$$
\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right)=0
$$

Q2. For $a \neq 0, x \mapsto \frac{1}{x}, x \mapsto \sin x$ and $x \mapsto x$ are continuous at $x=a$. Therefore the function $f(x)$ is continuous on $\mathbb{R} /\{0\}$. At $x=0$, we have $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0=f(0)$. Therefore f is continuous at 0 too. So f is continuous on the whole \mathbb{R}.
Q3. For $x>0, x>e^{-\frac{1}{x}}>0$ and $\left|\sin \cos \left(\frac{1}{x}\right)\right| \leq 1$. Therefore

$$
\lim _{x \rightarrow 0^{+}} e^{-\frac{1}{x}} \sin \left(\cos \frac{1}{x}\right)=0 .
$$

Since we are given that f is continuous, $a=f(0)=\lim _{x \rightarrow 0^{+}} e^{-\frac{1}{x}} \sin \left(\cos \frac{1}{x}\right)=0$. Now $\lim _{x \rightarrow 0^{-}} e^{e^{\sin \frac{1}{x}}}$ does not exist. So if f need to be continuous, we must have $b=0$.
Q4. Let $x \in \mathbb{R}$. Define a sequence $\left\{a_{n}\right\}$ by $a_{n}=\frac{x}{2^{n}}$. Then we have $\lim _{n \rightarrow \infty} a_{n}=0$. Since $f\left(a_{n}\right)=f\left(a_{n+1}\right)$ for all positive integer n and f is continuous on \mathbb{R}, we have

$$
f(x)=f(x / 2)=\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(0) .
$$

Since x is arbitrary, we conclude that $f(x)=f(0)$ for all $x \in \mathbb{R}$.

Q5. Let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$ be a univariate polynomial of odd degree with real coefficients and $a_{n} \neq 0$. If $\frac{1}{a_{n}} P(x)$ has a root c in real numbers, then $P(c)=a_{n} \frac{1}{a_{n}} P(c)=0$. So we may assume $a_{n}=1$. Now let $M=n\left(\left|a_{n-1}\right|+\left|a_{n-2}\right|+\right.$ $\left.\cdots+\left|a_{0}\right|+1\right)>0$. We have

$$
\left(-\left(\left|a_{n-1}\right|+\cdots+\left|a_{0}\right|+1\right)\right)^{n} \leq\left|a_{k}\right|\left(\left|a_{n-1}\right|+\cdots+\left|a_{0}\right|+1\right)^{k} \leq\left(\left|a_{n-1}\right|+\left|a_{n-2}\right|+\cdots+\left|a_{0}\right|+1\right)^{n}
$$

for $k=0,1, \ldots n-1$. So $P(M)>0$ and $P(-M)<0$ and by applying Intermediate Value Theorem on $[-M, M]$, there is a root between $-M$ and M.
Q6. (a) Since $\lim _{x \rightarrow 0^{+}} \sqrt[2016]{x}=0$ and $\left|\sin \left(2 e^{\frac{1}{x}}\right)\right| \leq 1$, we have $\lim _{x \rightarrow 0^{+}} \sqrt[2016]{x} \sin \left(2 e^{1 / x}\right)+$ $1=1$ and $\lim _{x \rightarrow 0^{-}} f(x)=1$. Therefore f is continuous at 0 . At other points, the continuity of f follows from composting continuous functions.
(b) Since f is continuous on \mathbb{R}, the function $g(x):=f(x)-x$ is also continuous on \mathbb{R}. In particular, g is continuous on $[0,1]$. Furthermore, $g(0)=f(0)-0=1$, $g(1)=f(1)-1=\sin \left(2 e^{1 / 1}\right)=\sin (2 e)$. Since $\pi<4<2 e<6<2 \pi$, we have $g(1)<0$. By Intermediate Value Theorem, there exists $c \in[0,1]$ such that $g(c)=0$, that is, $f(c)=c$.

