THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010D&E (2016/17 Term 1) University Mathematics Tutorial 2 Solutions

Problems that may be demonstrated in class :

Assume we know the fact: $2 < e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$, $\lim_{n \to \infty} \sin \frac{1}{n} = 0$.

Q1. State whether the following sequence converges. Find the limit if it exists.

(a)
$$\frac{37(-n)^{2017}-(-n)^{689}}{141(-n)^{2017}+928(-n)^{64}}$$
; (b) $\sqrt[3]{2n^3+1} - \sqrt[3]{2n^3-n^2}$; (c) $(-1/2)^n$;
(d) $(1-\frac{1}{n+1})^n$; (e) $\sin\frac{n^2}{n+2} - \sin\frac{n^3-n-2}{n^2+2n}$; (f) $\frac{n^2}{\ln(n+1)}$;
(g) $\cos\frac{1}{n}$; (h) $\tan\frac{1}{n}$.

- Q2. Let $\{a_n\}$ be a harmonic sequence, i.e. a sequence such that $a_n \neq 0$ for any $n \in \mathbb{N}$ and $1/a_n$ is an arithmetic sequence. Prove that $\{a_n\}$ converges.
- Q3. Let $\{a_n\}$ be a sequence such that $a_n > 0$ for any $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = a > 0$. Use Sandwich Theorem to show that $\{\sqrt{a_n}\}$ converges and $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$.
- Q4. Suppose $\{a_n\}$ is a sequence such that $a_1 \neq 0$ and $a_{n+1} = 2^{-1}(a_n + a_n^{-1})$ for any $n \in \mathbb{N}$. Does $\{a_n\}$ converge? If it does, find its limit.
- Q5. Suppose for any $m \in \mathbb{N}$, we have a function $f_m(x) = x^2 mx 1, x \in \mathbb{R}$ and a sequence $\{a_{m,n}\}$ satisfying the recursive relation:

$$a_{m,n+1} = m + \frac{1}{a_{m,n}}$$
 for any $n \in \mathbb{N}$, $a_{m,1} > 0$.

(a) Fix $m \in \mathbb{N}$. Show that for any $n \in \mathbb{N}$, $a_{m,n} > 0$ and

$$f_m(a_{m,n+1}) = -\frac{f_m(a_{m,n})}{a_{m,n}^2} = \frac{a_{m,n+1} - a_{m,n}}{a_{m,n}}.$$

- (b) Fix $m \in \mathbb{N}$. Show that $\{a_{m,2n-1}\}$ is monotonic decreasing and bounded below if $f_m(a_{m,1}) \ge 0$ and $\{a_{m,2n-1}\}$ is a monotonic increasing and bounded above if $f_m(a_{m,1}) < 0$.
- (c) Fix $m \in \mathbb{N}$. Show that $\{a_{m,n}\}$ converges and find its limit a_m in terms of m.
- (d) Evaluate $\lim_{m\to\infty} a_m$ and $\lim_{m\to\infty} (a_{m+1} a_m)$.

Solution Q1. (a)

$$\lim_{n \to \infty} \frac{37(-n)^{2017} - (-n)^{689}}{141(-n)^{2017} + 928(-n)^{64}} = \lim_{n \to \infty} \frac{-37n^{2017} + n^{689}}{-141n^{2017} + 928n^{64}}$$
$$= \lim_{n \to \infty} \frac{-37 + \frac{1}{n^{1382}}}{-141 + \frac{928}{n^{1953}}} = \frac{-37}{-141} = \frac{37}{141}$$

$$\lim_{n \to \infty} \left(\sqrt[3]{2n^3 + 1} - \sqrt[3]{2n^3 - n^2} \right)$$

=
$$\lim_{n \to \infty} \frac{(2n^3 + 1) - (2n^3 - n^2)}{\sqrt[3]{(2n^3 + 1)^2} + \sqrt[3]{(2n^3 + 1)(2n^3 - n^2)} + \sqrt[3]{(2n^3 - n^2)^2}}$$

=
$$\lim_{n \to \infty} \frac{1 + n^{-2}}{\sqrt[3]{(2 + n^{-3})^2} + \sqrt[3]{(2 + n^{-3})(2 - n^{-1})} + \sqrt[3]{(2 - n^{-1})^2}}$$

=
$$\frac{1}{\sqrt[3]{2^2} + \sqrt[3]{2 \cdot 2} + \sqrt[3]{2^2}} = \frac{1}{3\sqrt[3]{4}}.$$

- (c) Since 0 < 1/2 < 1, $\lim_{n\to\infty} 1/2^n = 0 = \lim_{n\to\infty} -1/2^n$. Note that for any $n \in \mathbb{N}, -1/2^n \le (-1/2)^n \le 1/2^n$. By Sandwich Theorem, $\lim_{n\to\infty} (-1/2)^n = 0$. (d) Since $\lim_{n\to\infty} (1+\frac{1}{n})^n = e > 0$,
 - $\lim_{n \to \infty} \left(1 \frac{1}{n+1} \right)^n = \lim_{n \to \infty} \left(\frac{n}{n+1} \right)^n = \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n} \right)^n} = \frac{1}{e}.$

(e) For any $n \in \mathbb{N}$,

$$\begin{aligned} \left| \sin \frac{n^2}{n+2} - \sin \frac{n^3 - n - 2}{n^2 + 2n} \right| \\ &= \left| 2 \sin \frac{1}{2} \left(\frac{n^2}{n+2} - \frac{n^3 - n - 2}{n^2 + 2n} \right) \cos \frac{1}{2} \left(\frac{n^2}{n+2} + \frac{n^3 - n - 2}{n^2 + 2n} \right) \right| \\ &\leq \left| 2 \sin \frac{1}{2} \left(\frac{n^2}{n+2} - \frac{n^3 - n - 2}{n^2 + 2n} \right) \right| = 2 \sin \frac{1}{2n}, \\ &\therefore -2 \sin \frac{1}{2n} \le \sin \frac{n^2}{n+2} - \sin \frac{n^3 - n - 2}{n^2 + 2n} \le 2 \sin \frac{1}{2n}. \end{aligned}$$

We know that $\{\sin \frac{1}{2}\}$ is a subsequence of $\{\sin \frac{1}{n}\}$ which converges to 0. Thus $\lim_{n\to\infty} \sin \frac{1}{2n} = 0$, therefore $\lim_{n\to\infty} 2\sin \frac{1}{2n} = 0 = \lim_{n\to\infty} -2\sin \frac{1}{2n}$. By Sandwich Theorem, $\lim_{n\to\infty} (\sin \frac{n^2}{n+2} - \sin \frac{n^3 - n - 2}{n^2 + 2n}) = 0$.

(f) Note that $1 + 1 = 2 < e^1$. Assume $k + 1 < e^k$ for some $k \in \mathbb{N}$. Then

$$k + 2 \le e^k + 1 \le 2e^k < e^{k+1}$$

By mathematical induction, $n + 1 < e^n$ for any $n \in \mathbb{N}$. Then for any $n \in \mathbb{N}$,

$$\ln(n+1) < n$$
 and thus $n < \frac{n^2}{\ln(n+1)}$

Because $\lim_{n\to\infty} n = +\infty$, $\lim_{n\to\infty} n^2 / \ln(n+1) = +\infty$.

(g) As in (e), since $\lim_{n\to\infty} \sin \frac{1}{n} = 0$ and $\{\sin \frac{1}{2n}\}$ is a subsequence of $\{\sin \frac{1}{n}\}$, $\lim_{n\to\infty} \sin \frac{1}{2n} = 0$. Then

$$\lim_{n \to \infty} \cos \frac{1}{n} = \lim_{n \to \infty} \left(1 - \sin^2 \frac{1}{2n} \right) = 1 - 0^2 = 1.$$

(h) As $\lim_{n\to\infty} \sin\frac{1}{n} = 0$ and $\lim_{n\to\infty} \cos\frac{1}{n} = 1 \neq 0$,

$$\lim_{n \to \infty} \tan \frac{1}{n} = \lim_{n \to \infty} \frac{\sin \frac{1}{n}}{\cos \frac{1}{n}} = \frac{0}{1} = 0.$$

- Q2. There exist real numbers a and d such that $1/a_n = a + nd$ for any $n \in \mathbb{N}$. If d = 0, then $a = 1/a_n \neq 0$ for any $n \in \mathbb{N}$ and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} 1/a = 1/a$. If $d \neq 0$, then $\lim_{n\to\infty} a_n = \lim_{n\to\infty} \frac{1}{a+nd} = \lim_{n\to\infty} \frac{n^{-1}}{an^{-1}+d} = 0$. $\{a_n\}$ converges.
- Q3. For any $n \in \mathbb{N}$,

$$0 \le \left|\sqrt{a_n} - \sqrt{a}\right| = \left|\frac{a_n - a}{\sqrt{a_n} + \sqrt{a}}\right| = \frac{|a_n - a|}{\sqrt{a_n} + \sqrt{a}} \le \frac{|a_n - a|}{\sqrt{a}}$$
$$\therefore -\frac{|a_n - a|}{\sqrt{a}} \le \sqrt{a_n} - a \le \frac{|a_n - a|}{\sqrt{a}}.$$

We see that $\lim_{n\to\infty} (a_n - a) = a - a = 0$, whence $\lim_{n\to\infty} \frac{|a_n - a|}{\sqrt{a}} = \frac{0}{\sqrt{a}} = 0$ and $\lim_{n\to\infty} \frac{-|a_n - a|}{\sqrt{a}} = 0$. By Sandwich Theorem, $\lim_{n\to\infty} (\sqrt{a_n} - a) = 0$, implying that $\lim_{n\to\infty} \sqrt{a_n} = \lim_{n\to\infty} (\sqrt{a_n} - \sqrt{a}) + \sqrt{a} = \sqrt{a}$.

Q4. We consider the cases when $a_1 > 0$ and when $a_1 < 0$ separately.

Case (1): $a_1 > 0$. Assume $a_k > 0$ for some $k \in \mathbb{N}$. Then $a_{k+1} = 2^{-1}(a_k + a_k^{-1}) > 0$. By mathematical induction, $a_n > 0$ for any $n \in \mathbb{N}$. Observe that for any $n \in \mathbb{N}$,

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) = 1 + \frac{1}{2} \left(a_n - 2 + \frac{1}{a_n} \right) = 1 + \frac{1}{2} \left(\sqrt{a_n} - \frac{1}{\sqrt{a_n}} \right)^2 \ge 1,$$

$$\therefore a_{n+2} = \frac{1}{2} \left(a_{n+1} + \frac{1}{a_{n+1}} \right) = a_{n+1} + \frac{1 - a_{n+1}^2}{2a_{n+1}} \le a_{n+1} + \frac{1 - 1^2}{2a_{n+1}} = a_{n+1}.$$

Hence $\{a_{n+1}\}$ is monotonic decreasing and bounded below by 1. By Monotone Convergence Theorem, $\{a_{n+1}\}$ converges. Let $a = \lim_{n \to \infty} a_{n+1}$. Then $a \ge 1$ and

$$2a^{2} = \lim_{n \to \infty} 2a_{n}a_{n+1} = \lim_{n \to \infty} (a_{n}^{2} + 1) = a^{2} + 1,$$

$$(a+1)(a-1) = a^{2} - 1 = 0,$$

$$\therefore a = 1 \text{ or } -1 \text{ (rejected)}.$$

Case (2): $a_1 < 0$. Define $b_n = -a_n$ for any $n \in \mathbb{N}$. Then $b_1 = -a_1 > 0$ and $b_n = -a_n = -2^{-1}(a_n + a_n^{-1}) = 2^{-1}(b_n + b_n^{-1})$ for any $n \in \mathbb{N}$. Applying case (1), $\lim_{n \to \infty} b_n = 1$, whence $\lim_{n \to \infty} a_n = \lim_{n \to \infty} (-b_n) = -1$.

Combining the two cases, we conclude that the sequence $\{a_n\}$ converges and

$$\lim_{n \to \infty} a_n = \begin{cases} 1, & \text{if } a_1 > 0; \\ -1, & \text{if } a_1 < 0. \end{cases}$$

Q5. (a) By assumption, $a_{m,1} > 0$. Assume $a_{m,k} > 0$ for some $k \in \mathbb{N}$. Then we have $a_{m,k+1} = m + \frac{1}{a_{m,k}} > m > 0$. By mathematical induction, $a_{m,n} > 0$ for any $n \in \mathbb{N}$. For any $n \in \mathbb{N}$,

$$a_{m,n}^2 f_m(a_{m,n+1}) = a_{m,n}^2 \left[\left(m + \frac{1}{a_{m,n}} \right)^2 - m \left(m + \frac{1}{a_{m,n}} \right) - 1 \right]$$
$$= m a_{m,n} + 1 - a_{m,n}^2 = -f_m(a_{m,n}),$$
$$\therefore \frac{a_{m,n+1} - a_{m,n}}{a_{m,n}} = \frac{m a_{m,n} + 1 - a_{m,n}^2}{a_{m,n}^2} = -\frac{f_m(a_{m,n})}{a_{m,n}^2} = f_m(a_{m,n+1}).$$

(b) First notice that for any $n \in \mathbb{N}$,

$$a_{m,n+2} - a_{m,n} = (a_{m,n+2} - a_{m,n+1}) + (a_{m,n+1} - a_{m,n})$$

$$= a_{m,n+1}f_m(a_{m,n+2}) + a_{m,n}f_m(a_{m,n+1})$$

$$= a_{m,n+1}(1 - a_{m,n}a_{m,n+1})f_m(a_{m,n+2})$$

$$= -ma_{m,n}a_{m,n+1}f_m(a_{m,n+2})$$

$$= \frac{ma_{m,n}f_m(a_{m,n+1})}{a_{m,n+1}} = -\frac{mf_m(a_{m,n})}{a_{m,n}a_{m,n+1}},$$

$$\therefore a_{m,n+4} - a_{m,n+2} = -\frac{mf_m(a_{m,n+2})}{a_{m,n+2}a_{m,n+3}} = \frac{a_{m,n+2} - a_{m,n}}{a_{m,n}a_{m,n+1}a_{m,n+2}a_{m,n+3}}$$

Suppose $f_m(a_{m,1}) \ge 0$. Then $a_{m,3} - a_{m,1} = -\frac{mf_m(a_{m,1})}{a_{m,1}a_{m,3}} \le 0$. Assume $a_{m,2k+1} - a_{2k-1} \le 0$ for some $k \in \mathbb{N}$. Then

$$a_{m,2k+3} - a_{m,2k+1} = \frac{a_{m,2k+1} - a_{m,2k-1}}{a_{m,2k-1}a_{m,2k}a_{m,2k+1}a_{m,2k+2}} \le 0.$$

By mathematical induction, $\{a_{m,2n-1}\}$ is monotonic decreasing. Clearly, the sequence $\{a_{m,2n-1}\}$ is bounded below by 0.

Suppose $f_m(a_{m,1}) < 0$. Then $a_{m,3} - a_{m,1} = -\frac{mf_m(a_{m,1})}{a_{m,1}a_{m,3}} > 0$. Assume $a_{m,2k+1} - a_{2k-1} > 0$ for some $k \in \mathbb{N}$. Then

$$a_{m,2k+3} - a_{m,2k+1} = \frac{a_{m,2k+1} - a_{m,2k-1}}{a_{m,2k-1}a_{m,2k}a_{m,2k+1}a_{m,2k+2}} > 0.$$

By mathematical induction, $\{a_{m,2n-1}\}$ is monotonic increasing. Consider any $n \in \mathbb{N}$. We have $f_m(a_{m,2n-1}) = -m^{-1}a_{m,2n-1}a_{m,2n}(a_{m,2n+1}-a_{m,2n-1}) \leq 0$. For any real number x > 2m, $f_m(x) = x(x-m)-1 \geq 2m(2m-m)-1 = 2m^2-1 > 0$. Hence $a_{m,2n-1} \leq 2m$. The sequence $\{a_{m,2n-1}\}$ is bounded above by 2m.

(c) By part (b) and Monotone Convergence Theorem, $\{a_{m,2n-1}\}$ converges. Let $b_{m,n} = a_{m,n+1}$ for any $n \in \mathbb{N}$. Since $b_{m,1} = a_{m,2} > 0$ and $b_{m,n+1} = m + \frac{1}{b_{m,n}}$ for any $n \in \mathbb{N}$, $\{b_{m,2n-1}\}$ converges and so does $\{a_{m,2n}\}$.

$$\lim_{n \to \infty} (a_{m,2n} - a_{m,2n-1}) = \lim_{n \to \infty} a_{m,2n-1} f_m(a_{m,2n})$$
$$= \lim_{n \to \infty} m^{-1} a_{m,2n-1} a_{m,2n} a_{m,2n+1} (a_{m,2n} - a_{m,2n+2}) = 0,$$
$$\therefore \lim_{n \to \infty} a_{m,2n} = \lim_{n \to \infty} a_{m,2n-1}.$$

Therefore, $\{a_{m,n}\}$ converges. Let $a_m = \lim_{n \to \infty} a_{m,n}$. Since $a_{m,n} \ge 0$ for any $n \in \mathbb{N}$, we have $a_m \ge 0$.

$$a_m^2 = \lim_{n \to \infty} a_{m,n} a_{m,n+1} = \lim_{n \to \infty} (m a_{m,n} + 1) = m a_m + 1,$$

$$f_m(a_m) = a_m^2 - m a_m + 1 = 0,$$

$$a_m = \frac{m + \sqrt{m^2 + 4}}{2} \text{ or } \frac{m - \sqrt{m^2 + 4}}{2} \text{ (rejected)}.$$

(d) For any $m \in \mathbb{N}$, $a_m \geq 2^{-1}(m + \sqrt{m^2}) = m$. Since $\lim_{m \to \infty} m = +\infty$, $\lim_{m \to \infty} a_m = +\infty$.

$$\lim_{m \to \infty} (a_{m+1} - a_m) = \lim_{m \to \infty} \frac{m + 1 + \sqrt{(m+1)^2 + 4} - m - \sqrt{m^2 + 4}}{2}$$
$$= \lim_{m \to \infty} \left(\frac{1}{2} + \frac{((m+1)^2 + 4) - (m^2 + 4)}{2(\sqrt{(m+1)^2 + 4} + \sqrt{m^2 + 4})} \right)$$
$$= \lim_{m \to \infty} \left(\frac{1}{2} + \frac{2m + 1}{2(\sqrt{(m+1)^2 + 4} + \sqrt{m^2 + 4})} \right)$$
$$= \lim_{m \to \infty} \left(\frac{1}{2} + \frac{2 + \frac{1}{m}}{2\left(\sqrt{(1 + \frac{1}{m})^2 + \frac{4}{m^2}} + \sqrt{1 + \frac{4}{m^2}}\right)} \right)$$
$$= \frac{1}{2} + \frac{2}{2(1 + 1)} = 1.$$