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Definition (Infinite sequence of real numbers)

An infinite sequence of real numbers is defined by a function
from the set of positive integers Z+ = {1, 2, 3, . . . } to the set of
real numbers R.

Example (Sequences)

Arithmetic sequence: an = 3n + 4; 7, 10, 13, 16 . . .

Geometric sequence: an = 3 · 2n; 6, 12, 24, 48 . . .

Fibonacci’s sequence:

Fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
;

1, 1, 2, 3, 5, 8, 13, . . .
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Definition (Limit of sequence)

1 Suppose there exists real number L such that for any ε > 0, there
exists N ∈ N such that for any n > N, we have |an − L| < ε. Then
we say that an is convergent, or an converges to L, and write

lim
n→∞

an = L.

Otherwise we say that an is divergent.

2 Suppose for any M > 0, there exists N ∈ N such that for any
n > N, we have an > M. Then we say that an tends to +∞ as n
tends to infinity, and write

lim
n→∞

an = +∞.

We define an tends to −∞ in a similar way. Note that an is
divergent if it tends to ±∞.
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Example (Intuitive meaning of limits of infinite sequences)

an First few terms Limit

1

n2
1,

1

4
,

1

9
,

1

16
, . . . 0

n

n + 1

1

2
,

2

3
,

3

4
,

4

5
, . . . 1

(−1)n+1 1,−1, 1,−1, . . . does not exist

2n 2, 4, 6, 8, . . . does not exist/+∞(
1 +

1

n

)n

2,
9

4
,

64

27
,

625

256
, . . . e ≈ 2.71828

Fn+1

Fn
1, 2,

3

2
,

5

3
, . . .

1 +
√

5

2
≈ 1.61803
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Definition (Monotonic sequence)

1 We say that an is monotonic increasing (decreasing) if for
any m < n, we have am ≤ an (am ≥ an).

2 We say that an is strictly increasing (decreasing) if for any
m < n, we have am < an (am > an).

Definition (Bounded sequence)

We say that an is bounded if there exists real number M such that
|an| < M for any n ∈ N.
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Example (Bounded and monotonic sequence)

an Bounded Monotonic Convergent

1

n2
X X X

2n − (−1)n

n
X × X

n2 × X ×
1− (−1)n X × ×

(−1)nn × × ×
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Theorem

If an is convergent, then an is bounded.

Convergent⇒ Bounded

Note that the converse of the above statement is not correct.

Bounded 6⇒ Convergent

The following theorem is very important and we will discuss it in
details later.

Theorem (Monotone convergence theorem)

If an is bounded and monotonic, then an is convergent.

Bounded and Monotonic⇒ Convergent
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Exercise (True or False)

Suppose lim
n→∞

an = a and lim
n→∞

bn = b. Then

lim
n→∞

(an ± bn) = a± b.

Answer: T
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Exercise (True or False)

Suppose lim
n→∞

an = a and c is a real number. Then

lim
n→∞

can = ca.

Answer: T
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Exercise (True or False)

If lim
n→∞

an = a and lim
n→∞

bn = b, then

lim
n→∞

anbn = ab.

Answer: T

MATH1010 University Mathematics



Sequences
Limits and Continuity

Limits of sequences
Squeeze theorem
Monotone convergence theorem

Exercise (True or False)

If lim
n→∞

an = a and lim
n→∞

bn = b, then

lim
n→∞

an
bn

=
a

b
.

Answer: F
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Exercise (True or False)

If lim
n→∞

an = a and lim
n→∞

bn = b 6= 0, then

lim
n→∞

an
bn

=
a

b
.

Answer: T
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Exercise (True or False)

If lim
n→∞

an = 0, then

lim
n→∞

anbn = 0.

Answer: F

Example

For an =
1

n
and bn = n, we have lim

n→∞
an = 0 but

lim
n→∞

anbn 6= 0.
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Exercise (True or False)

If lim
n→∞

an = 0 and bn is convergent, then

lim
n→∞

anbn = 0.

Answer: T

Proof.

lim
n→∞

anbn = lim
n→∞

an lim
n→∞

bn

= 0
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Exercise (True or False)

If lim
n→∞

an = 0 and bn is bounded, then

lim
n→∞

anbn = 0.

Answer: T
Caution! The previous proof does not work.
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Exercise (True or False)

If a2n is convergent, then an is convergent.

Answer: F

Example

For an = (−1)n, a2n converges to 1 but an is divergent.
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Exercise (True or False)

If an is convergent, then |an| is convergent.

Answer: T
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Exercise (True or False)

If |an| is convergent, then an is convergent.

Answer: F

MATH1010 University Mathematics



Sequences
Limits and Continuity

Limits of sequences
Squeeze theorem
Monotone convergence theorem

Exercise (True or False)

If an and bn are divergent, then an + bn is divergent.

Answer: F

Example

The sequences an = n and bn = −n are divergent but an + bn = 0
converges to 0.
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Exercise (True or False)

If an is convergent and lim
n→∞

bn = ±∞, then

lim
n→∞

an
bn

= 0.

Answer: T
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Exercise (True or False)

If an is bounded and lim
n→∞

bn = ±∞, then

lim
n→∞

an
bn

= 0.

Answer: T
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Exercise (True or False)

Suppose an is bounded. Suppose bn is a sequence and there exists
N such that bn = an for any n > N. Then bn is bounded.

Answer: T
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Exercise (True or False)

Suppose lim
n→∞

an = a. Suppose bn is a sequence and there exists N

such that bn = an for any n > N. Then

lim
n→∞

bn = a.

Answer: T
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Exercise (True or False)

Suppose an and bn are convergent sequences such that an < bn for
any n. Then

lim
n→∞

an < lim
n→∞

bn.

Answer: F

Example

There sequences an = 0 and bn =
1

n
satisfy an < bn for any n.

However
lim
n→∞

an 6< lim
n→∞

bn

because both of them are 0.
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Exercise (True or False)

Suppose an and bn are convergent sequences such that an ≤ bn for
any n. Then

lim
n→∞

an ≤ lim
n→∞

bn.

Answer: T
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Exercise (True or False)

If lim
n→∞

an = a, then

lim
n→∞

a2n = lim
n→∞

a2n+1 = a.

Answer: T
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Exercise (True or False)

If lim
n→∞

a2n = lim
n→∞

a2n+1 = a, then

lim
n→∞

an = a.

Answer: T
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Exercise (True or False)

If an is convergent, then

lim
n→∞

(an+1 − an) = 0.

Answer: T
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Exercise (True or False)

If lim
n→∞

(an+1 − an) = 0, then an is convergent.

Answer: F

Example

Let an =
√

n. Then lim
n→∞

(an+1 − an) = 0 and an is divergent.
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Exercise (True or False)

If lim
n→∞

(an+1 − an) = 0 and an is bounded, then an is convergent.

Answer: F

Example

0,
1

2
, 1,

2

3
,

1

3
, 0,

1

4
,

2

4
,

3

4
, 1,

4

5
,

3

5
,

2

5
,

1

5
, 0,

1

6
,

2

6
, . . .
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Example

Let a > 0 be a positive real number.

lim
n→∞

an =


+∞, if a > 1

1, if a = 1

0, if 0 < a < 1

.
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Example

lim
n→∞

2n − 5

3n + 1
= lim

n→∞

2− 5
n

3 + 1
n

=
2− 0

3 + 0

=
2

3
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Example

lim
n→∞

n3 − 2n + 7

4n3 + 5n2 − 3
= lim

n→∞

1− 2
n2

+ 7
n3

4 + 5
n −

3
n3

=
1

4
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Example

lim
n→∞

3n −
√

4n2 + 1

3n +
√

9n2 + 1
= lim

n→∞

3−
√
4n2+1
n

3 +
√
9n2+1
n

= lim
n→∞

3−
√

4 + 1
n2

3 +
√

9 + 1
n2

=
1

6

MATH1010 University Mathematics



Sequences
Limits and Continuity

Limits of sequences
Squeeze theorem
Monotone convergence theorem

Example

lim
n→∞

(n −
√

n2 − 4n + 1)

= lim
n→∞

(n −
√

n2 − 4n + 1)(n +
√

n2 − 4n + 1)

n +
√

n2 − 4n + 1

= lim
n→∞

n2 − (n2 − 4n + 1)

n +
√

n2 − 4n + 1

= lim
n→∞

4n − 1

n +
√

n2 − 4n + 1

= lim
n→∞

4− 1
n

1 +
√

1− 4
n + 1

n2

= 2
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Example

lim
n→∞

ln(n4 + 1)

ln(n3 + 1)
= lim

n→∞

ln(n4(1 + 1
n4

))

ln(n3(1 + 1
n3

))

= lim
n→∞

ln n4 + ln(1 + 1
n4

)

ln n3 + ln(1 + 1
n3

)

= lim
n→∞

4 ln n + ln(1 + 1
n4

)

3 ln n + ln(1 + 1
n3

)

= lim
n→∞

4 +
ln(1+ 1

n4
)

ln n

3 +
ln(1+ 1

n3
)

ln n

=
4

3
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Theorem (Squeeze theorem)

Suppose an, bn, cn are sequences such that an ≤ bn ≤ cn for any n
and lim

n→∞
an = lim

n→∞
cn = L. Then bn is convergent and

lim
n→∞

bn = L.
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Theorem

If an is bounded and lim
n→∞

bn = 0, then lim
n→∞

anbn = 0.

Proof.

Since an is bounded, there exists M such that −M < an < M for any n.
Thus

−M|bn| < anbn < M|bn|

for any n. Now

lim
n→∞

(−M|bn|) = lim
n→∞

M|bn| = 0.

Therefore by squeeze theorem, we have

lim
n→∞

anbn = 0.
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Example

Find lim
n→∞

√
n + (−1)n√
n − (−1)n

.

Solution

Since (−1)n is bounded and lim
n→∞

1√
n

= 0, we have

lim
n→∞

(−1)n√
n

= 0 and therefore

lim
n→∞

√
n + (−1)n√
n − (−1)n

= lim
n→∞

1 + (−1)n√
n

1− (−1)n√
n

= 1
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Example

Show that lim
n→∞

2n

n!
= 0.

Proof.

Observe that for any n ≥ 3,

0 <
2n

n!
= 2

(
2

2
· 2

3
· 2

4
· · · 2

n − 1

)
2

n
≤ 2 · 2

n
=

4

n

and lim
n→∞

4

n
= 0. By squeeze theorem, we have

lim
n→∞

2n

n!
= 0.
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Theorem (Monotone convergence theorem)

If an is bounded and monotonic, then an is convergent.

Bounded and Monotonic⇒ Convergent
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Example

Let an be the sequence defined by the recursive relation{
an+1 =

√
an + 1 for n ≥ 1

a1 = 1
.

Find lim
n→∞

an.

n an
1 1

2 1.414213562

3 1.553773974

4 1.598053182

5 1.611847754

10 1.618016542

15 1.618033940
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Solution

Suppose lim
n→∞

an = a. Then lim
n→∞

an+1 = a and thus

a =
√

a + 1

a2 = a + 1

a2 − a− 1 = 0

By solving the quadratic equation, we have

a =
1 +
√

5

2
or

1−
√

5

2
.

It is obvious that a > 0. Therefore

a =
1 +
√

5

2
≈ 1.6180339887
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Solution

The above solution is not complete. The solution is valid only after
we have proved that lim

n→∞
an exists and is positive. This can be

done by using monotone convergent theorem. We are going to
show that an is bounded and monotonic.
Boundedness
We prove that 1 ≤ an < 2 for all n ≥ 1 by induction.
(Base case) When n = 1, we have a1 = 1 and 1 ≤ a1 < 2.
(Induction step) Assume that 1 ≤ ak < 2. Then

ak+1 =
√

ak + 1 ≥
√

1 + 1 > 1

ak+1 =
√

ak + 1 <
√

2 + 1 < 2

Thus 1 ≤ an < 2 for any n ≥ 1 which implies that an is bounded.
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Solution

Monotonicity
We prove that an+1 > an for any n ≥ 1 by induction.
(Base case) When n = 1, a1 = 1, a2 =

√
2 and thus a2 > a1.

(Induction step) Assume that

ak+1 > ak (Induction hypothesis).

Then

ak+2 =
√

ak+1 + 1 >
√

ak + 1 (by induction hypothesis)

= ak+1

This completes the induction step and thus an is strictly increasing.
We have proved that an is bounded and strictly increasing. Therefore an
is convergent by monotone convergence theorem. Since an ≥ 1 for any n,
we have lim

n→∞
an ≥ 1 is positive.
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Theorem

Let

an =

(
1 +

1

n

)n

bn =
n∑

k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!

Then

1 an < bn for any n > 1.

2 an and bn are convergent and

lim
n→∞

an = lim
n→∞

bn

The limit of the two sequences is the important Euler’s number

e ≈ 2.71828 18284 59045 23536 . . . .

which is also known as the Napier’s constant.
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Proof

Observe that by binomial theorem,

an =

(
1 +

1

n

)n

= 1 + n · 1

n
+

n(n − 1)

2!
· 1

n2
+

n(n − 1)(n − 2)

3!
· 1

n3
+ · · ·+ 1

nn

= 1 + 1 +
1

2!
· n − 1

n
+

1

3!
· (n − 1)(n − 2)

n2
+ · · ·+ 1

n!
· (n − 1) · · · 1

nn−1

= 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·

+
1

n!

(
1− 1

n

)
· · ·
(

1− n − 1

n

)
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Proof.

Boundedness: For any n > 1, we have

an = 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·

+
1

n!

(
1− 1

n

)
· · ·
(

1− n − 1

n

)
< 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

n!
= bn

≤ 1 + 1 +
1

21
+

1

22
+ · · ·+ 1

2n−1

= 1 + 2

(
1− 1

2n

)
< 3.

Thus 1 < an < bn < 3 for any n > 1. Therefore an and bn are
bounded.
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Proof

Monotonicity: For any n ≥ 1, we have

an = 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·

+
1

n!

(
1− 1

n

)
· · ·
(

1− n − 1

n

)
< 1 + 1 +

1

2!

(
1− 1

n + 1

)
+

1

3!

(
1− 1

n + 1

)(
1− 2

n + 1

)
+ · · ·

+
1

n!

(
1− 1

n + 1

)
· · ·
(

1− n − 1

n + 1

)
+

1

(n + 1)!

(
1− 1

n + 1

)
· · ·
(

1− n

n + 1

)
= an+1.

and it is obvious that bn < bn+1. Thus an are bn are strictly increasing.
Therefore an are bn are convergent by monotone convergence theorem.

MATH1010 University Mathematics



Sequences
Limits and Continuity

Limits of sequences
Squeeze theorem
Monotone convergence theorem

Proof

Alternative proof for monotonicity: Recall that the arithmetic-geometric
mean inequality says that for any positive real numbers x1, x2, . . . , xk , not all
equal, we have

x1x2 · · · xk <
(x1 + x2 + · · ·+ xk

k

)k
.

Taking k = n + 1, x1 = 1 and xi = 1 +
1

n
for i = 2, 3, . . . , n + 1, we have

1 ·
(

1 +
1

n

)n

<

1 + n

(
1 +

1

n

)
n + 1


n+1

(
1 +

1

n

)n

<

(
1 +

1

n + 1

)n+1

.
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Proof

Since an < bn for any n > 1, we have

lim
n→∞

an ≤ lim
n→∞

bn.

On the other hand, for a fixed m ≥ 1, define a sequence cn (which
depends on m) by

cn = 1 + 1 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·

+
1

m!

(
1− 1

n

)
· · ·
(

1− m − 1

n

)
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Proof

Then for any n > m, we have an > cn which implies that

lim
n→∞

an ≥ lim
n→∞

cn

= 1 + 1 +
1

2!
lim

n→∞

(
1− 1

n

)
+

1

3!
lim

n→∞

(
1− 1

n

)(
1− 2

n

)
+ · · ·

+
1

m!
lim

n→∞

(
1− 1

n

)
· · ·
(

1− m − 1

n

)
= 1 + 1 +

1

2!
+

1

3!
+ · · ·+ 1

m!
= bm.

Observe that m is arbitrary and thus

lim
n→∞

an ≥ lim
m→∞

bm = lim
n→∞

bn.

Therefore
lim

n→∞
an = lim

n→∞
bn.
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Example

Let an =
Fn+1

Fn
where Fn is the Fibonacci’s sequence defined by{

Fn+2 = Fn+1 + Fn

F1 = F2 = 1
.

Find lim
n→∞

an.

n an
1 1
2 2
3 1.5
4 1.666666666
5 1.6

10 1.618181818
15 1.618032787
20 1.618033999
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Theorem

For any n ≥ 1,

1 Fn+2Fn − F 2
n+1 = (−1)n+1

2 Fn+3Fn − Fn+2Fn+1 = (−1)n+1

Proof

1 When n = 1, we have F3F1 − F 2
2 = 2 · 1− 12 = 1 = (−1)2. Assume

Fk+2Fk − F 2
k+1 = (−1)k+1.

Then

Fk+3Fk+1 − F 2
k+2 = (Fk+2 + Fk+1)Fk+1 − F 2

k+2

= Fk+2(Fk+1 − Fk+2) + F 2
k+1

= −Fk+2Fk + F 2
k+1

= (−1)k+2 (by induction hypothesis)

Therefore Fn+2Fn − F 2
n+1 = (−1)n+1 for any n ≥ 1.
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Proof.

The proof for the second statement is basically the same. When
n = 1, we have F4F1 − F3F2 = 3 · 1− 2 · 1 = 1 = (−1)2. Assume

Fk+3Fk − Fk+2Fk+1 = (−1)k+1.

Then

Fk+4Fk+1 − Fk+3Fk+2 = (Fk+3 + Fk+2)Fk+1 − Fk+3Fk+2

= Fk+3(Fk+1 − Fk+2) + Fk+2Fk+1

= −Fk+3Fk + Fk+2Fk+1

= −(−1)k+1 (by induction hypothesis)

= (−1)k+2

Therefore Fn+3Fn − Fn+2Fn+1 = (−1)n+1 for any n ≥ 1.
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Theorem

Let an =
Fn+1

Fn
.

1 The sequence a1, a3, a5, a7, · · · , is strictly increasing.

2 The sequence a2, a4, a6, a8, · · · , is strictly decreasing.

Proof.

For any k ≥ 1, we have

a2k+1 − a2k−1 =
F2k+2

F2k+1
− F2k

F2k−1
=

F2k+2F2k−1 − F2k+1F2k

F2k+1F2k−1

=
(−1)2k

F2k+1F2k−1
=

1

F2k+1F2k−1
> 0

Therefore a1, a3, a5, a7, · · · , is strictly increasing. The second statement
can be proved in a similar way.
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Theorem

lim
k→∞

(a2k+1 − a2k) = 0

Proof.

For any k ≥ 1,

a2k+1 − a2k =
F2k+2

F2k+1
− F2k+1

F2k

=
F2k+2F2k − F 2

2k+1

F2k+1F2k
=

1

F2k+1F2k

Therefore

lim
k→∞

(a2k+1 − a2k) = lim
k→∞

1

F2k+1F2k
= 0.

MATH1010 University Mathematics



Sequences
Limits and Continuity

Limits of sequences
Squeeze theorem
Monotone convergence theorem

Theorem

lim
n→∞

Fn+1

Fn
=

1 +
√

5

2

Proof

First we prove that an = Fn+1

Fn
is convergent.

an is bounded. (1 ≤ an ≤ 2 for any n.)
a2k+1 and a2k are convergent. (They are bounded and monotonic.)

lim
k→∞

(a2k+1 − a2k) = 0⇒ lim
k→∞

a2k+1 = lim
k→∞

a2k

It follows that an is convergent and

lim
n→∞

an = lim
k→∞

a2k+1 = lim
k→∞

a2k .
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Proof.

To evaluate the limit, suppose lim
n→∞

Fn+1

Fn
= L. Then

L = lim
n→∞

Fn+2

Fn+1
= lim

n→∞

Fn+1 + Fn

Fn+1
= lim

n→∞

(
1 +

Fn

Fn+1

)
= 1 +

1

L

L2 − L− 1 = 0

By solving the quadratic equation, we have

L =
1 +
√

5

2
or

1−
√

5

2
.

We must have L ≥ 1 since an ≥ 1 for any n. Therefore

L =
1 +
√

5

2
.
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Remarks

The limit can be calculate directly using the formula

Fn =
αn − βn

α− β

=
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)

where

α =
1 +
√

5

2
, β =

1−
√

5

2

are the roots of the quadratic equation

x2 − x − 1 = 0.
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Definition (Convergence of infinite series)

We say that an infinite series

∞∑
k=1

ak = a1 + a2 + a3 + · · ·

is convergent if the sequence of partial sums

sn =
n∑

k=1

ak = a1 + a2 + a3 + · · ·+ an is convergent. If the infinite series is

convergent, then we define

∞∑
k=1

ak = lim
n→∞

sn = lim
n→∞

n∑
k=1

ak .

Definition (Absolute convergence)

We say that an infinite series
∞∑
k=1

ak is absolutely convergent if
∞∑
k=1

|ak | is

convergent.
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Example

Series Convergency Absolute convergency
∞∑
k=0

1

2k
= 1 +

1

2
+

1

22
+

1

23
+ · · · 2 Yes

∞∑
k=0

1

k!
= 1 + 1 +

1

2!
+

1

3!
+ · · · e Yes

∞∑
k=1

1

k
= 1 +

1

2
+

1

3
+

1

4
+ · · · divergent No

∞∑
k=1

1

k2
= 1 +

1

22
+

1

32
+

1

42
+ · · · π2

6
Yes

∞∑
k=1

(−1)k+1

k
= 1− 1

2
+

1

3
− 1

4
+ · · · ln 2 No

∞∑
k=1

(−1)k+1

2k − 1
= 1− 1

3
+

1

5
− 1

7
+ · · · π

4
No
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Theorem

If
∞∑
k=1

ak is convergent, then lim
k→∞

ak = 0.

The converse is not true. lim
k→∞

1

k
= 0 but

∞∑
k=1

1

k
is divergent.

Theorem

If
∞∑
k=1

|ak | is convergent, then
∞∑
k=1

ak is convergent.

Absolutely convergent⇒ Convergent

The converse is not true. lim
k→∞

(−1)k+1

k
is convergent but

∞∑
k=1

1

k
is

divergent.
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Theorem (Comparison test for convergence)

If 0 ≤ |ak | ≤ bk for any k and
∞∑
k=0

bk is convergent. Then
∞∑
k=0

ak is

convergent.

Theorem (Alternating series test)

If a0 > a1 > a2 > · · · > 0 is a decreasing sequence of positive real

numbers and lim
k→∞

ak = 0, then
∞∑
k=0

(−1)kak is convergent.
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Definition (Exponential function)

The exponential function is defined for real number x ∈ R by

ex = lim
n→∞

(
1 +

x

n

)n
= 1 + x +

x2

2!
+

x3

3!
+

x4

4!
+ · · ·

1 It can be proved that the two limits in the definition exist and
converge to the same value for any real number x .

2 ex is just a notation for the exponential function. One should
not interpret it as ‘e to the power x ’.
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Theorem

For any x , y ∈ R, we have

ex+y = exey .

Caution! One cannot use law of indices to prove the above identity.
It is because ex is just a notation for the exponential function and
it does not mean ‘e to the power x ’. In fact we have not defined
what ax means when x is a real number which is not rational.
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Proof.

ex+y =
∞∑
n=0

(x + y)n

n!

=
∞∑
n=0

n∑
m=0

n!

m!(n −m)!
·
xmyn−m

n!

=
∞∑
n=0

n∑
m=0

xmyn−m

m!(n −m)!

=
∞∑
m=0

∞∑
k=0

xmyk

m!k!

=
∞∑
m=0

xm

m!

∞∑
k=0

yk

k!

= exey

Here we have changed the order of summation in the 4th equality. We can do this
because the series for exponential function is absolutely convergent.
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Theorem

1 ex > 0 for any real number x.

2 ex is strictly increasing.

Proof.

1 For any x > 0, we have ex > 1 + x > 1. If x < 0, then

exe−x = ex+(−x) = e0 = 1

ex =
1

e−x
> 0

since e−x > 1. Therefore ex > 0 for any x ∈ R.

2 Let x , y be real numbers with x < y . Then y − x > 0 which implies
ey−x > 1. Therefore

ey = ex+(y−x) = exey−x > ex .
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Definition (Logarithmic function)

The logarithmic function is the function ln : R+ → R defined for
x > 0 by

y = ln x if ey = x .

In other words, ln x is the inverse function of ex .

It can be proved that for any x > 0, there exists unique real
number y such that ey = x .
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Theorem

1 ln xy = ln x + ln y

2 ln
x

y
= ln x − ln y

3 ln xn = n ln x for any integer n ∈ Z.

Proof.

1 Let u = ln x and v = ln y . Then x = eu, y = ev and we have

xy = euev = eu+v = e ln x+ln y

which means ln xy = ln x + ln y .

Other parts can be proved similarly.
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Definition (Cosine and sine functions)

The cosine and sine functions are defined for real number x ∈ R
by the infinite series

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ · · ·

sin x = x − x3

3!
+

x5

5!
− x7

7!
+ · · ·

1 When the sine and cosine are interpreted as trigonometric
ratios, the angles are measured in radian. (1800 = π)

2 The series for cosine and sine are convergent for any real
number x ∈ R.
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There are four more trigonometric functions namely tangent, cotangent,
secant and cosecant functions. All of them are defined in terms of sine
and cosine.

Definition (Trigonometric functions)

tan x =
sin x

cos x
, for x 6= 2k + 1

2
π, k ∈ Z

cot x =
cos x

sin x
, for x 6= kπ, k ∈ Z

sec x =
1

cos x
, for x 6= 2k + 1

2
π, k ∈ Z

csc x =
1

sin x
, for x 6= kπ, k ∈ Z
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Theorem (Trigonometric identities)

1 cos2 x + sin2 x = 1; sec2 x − tan2 x = 1; csc2 x − cot2 x = 1

2 cos(x ± y) = cos x cos y ∓ sin x sin y ;

sin(x ± y) = sin x cos y ± cos x sin y ;

tan(x ± y) =
tan x ± tan y

1∓ tan x tan y

3 cos 2x = cos2 x − sin2 x = 2 cos2 x − 1 = 1− 2 sin2 x ;

sin 2x = 2 sin x cos x ;

tan 2x =
2 tan x

1− tan2 x

4 2 cos x cos y = cos(x + y) + cos(x − y)

2 cos x sin y = sin(x + y)− sin(x − y)
2 sin x sin y = cos(x − y)− cos(x + y)

5 cos x + cos y = 2 cos
( x+y

2

)
cos
(

x−y
2

)
cos x − cos y = −2 sin

( x+y
2

)
sin
(

x−y
2

)
sin x + sin y = 2 sin

( x+y
2

)
cos
(

x−y
2

)
sin x − sin y = 2 cos

( x+y
2

)
sin
(

x−y
2

)
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Definition (Hyperbolic function)

The hyperbolic functions are defined for x ∈ R by

cosh x =
ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ · · ·

sinh x =
ex − e−x

2
= x +

x3

3!
+

x5

5!
+

x7

7!
+ · · ·
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Theorem (Hyperbolic identities)

1 cosh2 x − sinh2 x = 1

2 cosh(x + y) = cosh x cosh y + sinh x sinh y
sinh(x + y) = sinh x cosh y + cosh x sinh y

3 cosh 2x = cosh2 x + sinh2 x = 2 cosh2 x − 1 = 1 + 2 sinh2 x ;

sinh 2x = 2 sinh x cosh x
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Definition (Limit of function)

Let f (x) be a real valued function.

1 We say that a real number L is a limit of f (x) at x = a if for any ε > 0,
there exists δ > 0 such that

if 0 < |x − a| < δ, then |f (x)− L| < ε

and write
lim
x→a

f (x) = L.

2 We say that a real number L is a limit of f (x) at +∞ if for any ε > 0,
there exists R > 0 such that

if x > R, then |f (x)− L| < ε

and write
lim

x→+∞
f (x) = L.

The limit of f (x) at −∞ is defined similarly.
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1 Note that for the limit of f (x) at x = a to exist, f (x) may not
be defined at x = a and even if f (a) is defined, the value of
f (a) does not affect the value of the limit at x = a.

2 The limit of f (x) at x = a may not exists. However the limit
is unique if it exists.
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Theorem (Limit of function and limit of sequence)

Let f (x) be a real valued function. Then

lim
x→a

f (x) = L

if and only if for any sequence xn with lim
n→∞

xn = a, we have

lim
n→∞

f (xn) = L.
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Theorem

Let f (x), g(x) be functions and c be a real number. Then

1 lim
x→a

(f (x) + g(x)) = lim
x→a

f (x) + lim
x→a

g(x)

2 lim
x→a

cf (x) = c lim
x→a

f (x)

3 lim
x→a

f (x)g(x) = lim
x→a

f (x) lim
x→a

g(x)

4 lim
x→a

f (x)

g(x)
=

lim
x→a

f (x)

lim
x→a

g(x)
if lim

x→a
g(x) 6= 0.
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Theorem

Let f (u) be a function of u and u = g(x) is a function of x.
Suppose

1 lim
x→a

g(x) = b ∈ [−∞,+∞]

2 lim
u→b

f (u) = L

3 g(x) 6= b when x 6= a or f (b) = L.

Then
lim
x→a

f ◦ g(x) = L.
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Theorem (Squeeze theorem)

Let f (x), g(x), h(x) be real valued functions. Suppose

1 f (x) ≤ g(x) ≤ h(x) for any x 6= a on a neighborhood of a, and

2 lim
x→a

f (x) = lim
x→a

h(x) = L.

Then the limit of g(x) at x = a exists and

lim
x→a

g(x) = L.

Theorem

Suppose f (x) is bounded and lim
x→a

g(x) = 0. Then

lim
x→a

f (x)g(x) = 0.
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Theorem

1 lim
x→0

ex − 1

x
= 1

2 lim
x→0

ln(1 + x)

x
= 1

3 lim
x→0

sin x

x
= 1
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Proof. lim
x→0

ex − 1

x
= 1.

For any −1 < x < 1 with x 6= 0, we have

ex − 1

x
= 1 +

x

2!
+

x2

3!
+

x3

4!
+

x4

5!
+ · · ·

≤ 1 +
x

2
+

(
x2

4
+

x2

8
+

x2

16
+ · · ·

)
= 1 +

x

2
+

x2

2

ex − 1

x
= 1 +

x

2!
+

x2

3!
+

x3

4!
+ · · ·

≥ 1 +
x

2
−
(
x2

4
+

x2

8
+

x2

16
+ · · ·

)
= 1 +

x

2
− x2

2

and lim
x→0

(1 +
x

2
+

x2

2
) = lim

x→0
(1 +

x

2
− x2

2
) = 1. Therefore lim

x→0

ex − 1

x
= 1.
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Figure: lim
x→0

ex − 1

x
= 1
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Proof. lim
x→0

ln(1 + x)

x
= 1.

Let y = ln(1 + x). Then

ey = 1 + x

x = ey − 1

and x → 0 as y → 0. We have

lim
x→0

ln(1 + x)

x
= lim

y→0

y

ey − 1

= 1

Note that the first part implies lim
y→0

(ey − 1) = 0.
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Proof. lim
x→0

sin x

x
= 1.

Note that
sin x

x
= 1− x2

3!
+

x4

5!
− x6

7!
+

x8

9!
− x10

11!
+ · · · .

For any −1 < x < 1 with x 6= 0, we have

sin x

x
= 1−

(
x2

3!
− x4

5!

)
−
(
x6

7!
− x8

9!

)
− · · · ≤ 1

sin x

x
= 1− x2

6
+

(
x4

5!
− x6

7!

)
+

(
x8

9!
− x10

11!

)
+ · · · ≥ 1− x2

6

and lim
x→0

1 = lim
x→0

(1− x2

6
) = 1. Therefore

lim
x→0

sin x

x
= 1.
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Figure: lim
x→0

sin x

x
= 1
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Theorem

Let k be a positive integer.

1 lim
x→+∞

xk

ex
= 0

2 lim
x→+∞

(ln x)k

x
= 0
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Proof.

1 For any x > 0,

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · >

xk+1

(k + 1)!

and thus

0 <
xk

ex
<

(k + 1)!

x
.

Moreover lim
x→∞

(k + 1)!

x
= 0. Therefore

lim
x→+∞

xk

ex
= 0.

2 Let x = ey . Then x → +∞ as y → +∞ and ln x = y . We have

lim
x→+∞

(ln x)k

x
= lim

y→+∞

yk

ey
= 0.
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Example

1. lim
x→4

x2 − 16
√
x − 2

= lim
x→4

(x − 4)(x + 4)(
√
x + 2)

(
√
x − 2)(

√
x + 2)

= lim
x→4

(x − 4)(x + 4)(
√
x + 2)

x − 4

= lim
x→4

(x + 4)(
√
x + 2) = 32

2. lim
x→+∞

3e2x + ex − x4

4e2x − 5ex + 2x4
= lim

x→+∞

3 + e−x − x4e−2x

4− 5e−x + 2x4e−2x
=

3

4

3. lim
x→+∞

ln(2e4x + x3)

ln(3e2x + 4x5)
= lim

x→+∞

4x + ln(2 + x3e−4x )

2x + ln(3 + 4x5e−2x )

= lim
x→+∞

4 + ln(2+x3e−4x )
x

2 + ln(3+4x5e−2x )
x

= 2

4. lim
x→−∞

(x +
√
x2 − 2x) = lim

x→−∞

(x +
√
x2 − 2x)(x −

√
x2 − 2x)

x −
√
x2 − 2x

= lim
x→−∞

2x

x −
√
x2 − 2x

= lim
x→−∞

2

1 +
√

1− 2
x

= 1
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Example

5. lim
x→0

sin 6x − sin x

sin 4x − sin 3x
= lim

x→0

6 sin 6x
6x
− sin x

x
4 sin 4x

4x
− 3 sin 3x

3x

=
6− 1

4− 3
= 5

6. lim
x→0

1− cos x

x tan x
= lim

x→0

(1− cos x)(1 + cos x)

x sin x
cos x

(1 + cos x)

= lim
x→0

(1− cos2 x) cos x

x sin x(1 + cos x)

= lim
x→0

(
sin x

x

)
cos x

1 + cos x
=

1

2

7. lim
x→0

e2x − 1

ln(1 + 3x)
= lim

x→0

2

3
·
e2x − 1

2x
·

3x

ln(1 + 3x)
=

2

3

8. lim
x→0

x ln(1 + sin x)

1−
√
cos x

= lim
x→0

x(1 +
√
cos x)(1 + cos x) ln(1 + sin x)

1− cos2 x

= lim
x→0

x

sin x
·
ln(1 + sin x)

sin x
(1 +

√
cos x)(1 + cos x)

= 4

MATH1010 University Mathematics



Sequences
Limits and Continuity

Exponential, logarithmic and trigonometric functions
Limits of functions
Continuity of functions

Definition (Continuity)

Let f (x) be a real valued function. We say that f (x) is continuous at
x = a if

lim
x→a

f (x) = f (a).

In other words, f (x) is continuous at x = a if for any ε > 0, there exists
δ > 0 such that

if |x − a| < δ, then |f (x)− f (a)| < ε.

We say that f (x) is continuous on an interval in R if f (x) is continuous
at every point on the interval.
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Theorem

Let f (u) and u = g(x) be functions. Suppose f (u) is continuous
and the limit of g(x) at x = a exists. Then

lim
x→a

f (g(x)) = f
(

lim
x→a

g(x)
)
.
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Theorem

1 For any non-negative integer n, f (x) = xn is continuous on R.

2 The functions ex , cos x , sin x are continuous on R.

3 The logarithmic function ln x is continuous on R+.
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Proof.

We prove the continuity of xn and ex .
(Continuity of xn)

lim
x→a

x = a⇒ lim
x→a

xn = an.

Thus xn is continuous at x = a for any real number a.
(Continuity of ex)

lim
x→a

ex = lim
h→0

ea+h

= lim
h→0

eaeh

= ea

Thus ex is continuous at x = a for any real number a.
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Theorem

Suppose f (x), g(x) are continuous functions and c is a real
number. Then the following functions are continuous.

1 f (x) + g(x)

2 cf (x)

3 f (x)g(x)

4
f (x)

g(x)
at the points where g(x) 6= 0.

5 f ◦ g(x)
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Theorem

A function f (x) is continuous at x = a if

lim
x→a+

f (x) = lim
x→a−

f (x) = f (a).

The theorem is usually used to check whether a piecewise defined
function is continuous.
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Example

Given that the function

f (x) =


2x − 1 if x < 2

a if x = 2

x2 + b if x > 2

is continuous at x = 2. Find the value of a and b.

Solution

Note that

lim
x→2−

f (x) = lim
x→2−

(2x − 1) = 3

lim
x→2+

f (x) = lim
x→2+

(x2 + b) = 4 + b

f (2) = a

Since f (x) is continuous at x = 2, we have 3 = 4 + b = a which implies a = 3
and b = −1.
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Definition (Intervals)

Let a < b be real numbers. We define the intervals

(a, b) = {x ∈ R : a < x < b}
[a, b] = {x ∈ R : a ≤ x ≤ b}
(a, b] = {x ∈ R : a < x ≤ b}
[a, b) = {x ∈ R : a ≤ x < b}

(a,+∞) = {x ∈ R : a < x}
[a,+∞) = {x ∈ R : a ≤ x}
(−∞, b) = {x ∈ R : x < b}
(−∞, b] = {x ∈ R : x ≤ b}

(−∞,+∞) = R
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Definition (Open, closed and bounded sets)

Let D ⊂ R be a subset of R.

1 We say that D is open if for any x ∈ D, there exits ε > 0
such that (x − ε, x + ε) ⊂ D.

2 We say that D is closed if for any sequence xn ∈ D of
numbers in D which converges to x ∈ R, we have x ∈ D.

3 We say that D is bounded if there exists real number M such
that for any x ∈ D, we have |x | < M.

Note that a subset D ⊂ R is open if and only if its complement
Dc = {x ∈ R : x 6∈ D} in R is closed.
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Example

Let a < b be real numbers.

Subset open closed bounded

∅ Yes Yes Yes

(a, b) Yes No Yes

[a, b] No Yes Yes

(a, b],[a, b) No No Yes

(a,+∞),(−∞, b) Yes No No

[a,+∞),(−∞, b] No Yes No

(−∞,+∞) Yes Yes No

(−∞, a) ∪ [b,+∞) No No No
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Theorem (Intermediate value theorem)

Suppose f (x) is a function which is continuous on a closed and
bounded interval [a, b]. Then for any real number η between f (a)
and f (b), there exists ξ ∈ (a, b) such that f (ξ) = η.

Theorem (Extreme value theorem)

Suppose f (x) is a function which is continuous on a closed and
bounded interval [a, b]. Then there exists α, β ∈ [a, b] such that
for any x ∈ [a, b], we have

f (α) ≤ f (x) ≤ f (β).
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