MATH1010 University Mathematics

Department of Mathematics
The Chinese University of Hong Kong
(1) Sequences

- Limits of sequences
- Squeeze theorem
- Monotone convergence theorem
(2) Limits and Continuity
- Exponential, logarithmic and trigonometric functions
- Limits of functions
- Continuity of functions

Definition (Infinite sequence of real numbers)

An infinite sequence of real numbers is defined by a function from the set of positive integers $\mathbb{Z}^{+}=\{1,2,3, \ldots\}$ to the set of real numbers \mathbb{R}.

Example (Sequences)

- Arithmetic sequence: $a_{n}=3 n+4 ; 7,10,13,16 \ldots$
- Geometric sequence: $a_{n}=3 \cdot 2^{n} ; 6,12,24,48 \ldots$
- Fibonacci's sequence:

$$
F_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

$$
1,1,2,3,5,8,13, \ldots
$$

Definition (Limit of sequence)

(1) Suppose there exists real number L such that for any $\epsilon>0$, there exists $N \in \mathbb{N}$ such that for any $n>N$, we have $\left|a_{n}-L\right|<\epsilon$. Then we say that a_{n} is convergent, or a_{n} converges to L, and write

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

Otherwise we say that a_{n} is divergent.
(2) Suppose for any $M>0$, there exists $N \in \mathbb{N}$ such that for any $n>N$, we have $a_{n}>M$. Then we say that a_{n} tends to $+\infty$ as n tends to infinity, and write

$$
\lim _{n \rightarrow \infty} a_{n}=+\infty
$$

We define a_{n} tends to $-\infty$ in a similar way. Note that a_{n} is divergent if it tends to $\pm \infty$.

Example (Intuitive meaning of limits of infinite sequences)

a_{n}	First few terms	Limit
$\frac{1}{n^{2}}$	$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{16}, \ldots$	0
$\frac{n}{n+1}$	$\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \ldots$	1
$(-1)^{n+1}$	$1,-1,1,-1, \ldots$	does not exist
$2 n$	$2,4,6,8, \ldots$	does not exist $/+\infty$
$\left(1+\frac{1}{n}\right)^{n}$	$2, \frac{9}{4}, \frac{64}{27}, \frac{625}{256}, \ldots$	$e \approx 2.71828$
$\frac{F_{n+1}}{F_{n}}$	$1,2, \frac{3}{2}, \frac{5}{3}, \ldots$	$\frac{1+\sqrt{5}}{2} \approx 1.61803$

Definition (Monotonic sequence)

(1) We say that a_{n} is monotonic increasing (decreasing) if for any $m<n$, we have $a_{m} \leq a_{n}\left(a_{m} \geq a_{n}\right)$.
(2) We say that a_{n} is strictly increasing (decreasing) if for any $m<n$, we have $a_{m}<a_{n}\left(a_{m}>a_{n}\right)$.

Definition (Bounded sequence)

We say that a_{n} is bounded if there exists real number M such that $\left|a_{n}\right|<M$ for any $n \in \mathbb{N}$.

Example (Bounded and monotonic sequence)

a_{n}	Bounded	Monotonic	Convergent
$\frac{1}{n^{2}}$	\checkmark	\checkmark	\checkmark
$\frac{2 n-(-1)^{n}}{n}$	\checkmark	\times	\checkmark
n^{2}	\times	\checkmark	\times
$1-(-1)^{n}$	\checkmark	\times	\times
$(-1)^{n} n$	\times	\times	\times

Theorem

If a_{n} is convergent, then a_{n} is bounded.

Convergent \Rightarrow Bounded

Note that the converse of the above statement is not correct.

Bounded \nRightarrow Convergent

The following theorem is very important and we will discuss it in details later.

Theorem (Monotone convergence theorem)
If a_{n} is bounded and monotonic, then a_{n} is convergent.
Bounded and Monotonic \Rightarrow Convergent

Exercise (True or False)

Suppose $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$. Then

$$
\lim _{n \rightarrow \infty}\left(a_{n} \pm b_{n}\right)=a \pm b
$$

Answer: T

Exercise (True or False)

Suppose $\lim _{n \rightarrow \infty} a_{n}=a$ and c is a real number. Then

$$
\lim _{n \rightarrow \infty} c a_{n}=c a .
$$

Answer: T

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=a b
$$

Answer: T

Exercise (True or False)
 If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then
 $$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b}
$$

Answer: F

Exercise (True or False)
 If $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b \neq 0$, then
 $$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{a}{b} .
$$

Answer: T

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=0$, then

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

Answer: F

Example

For $a_{n}=\frac{1}{n}$ and $b_{n}=n$, we have $\lim _{n \rightarrow \infty} a_{n}=0$ but
$\lim _{n \rightarrow \infty} a_{n} b_{n} \neq 0$.

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=0$ and b_{n} is convergent, then

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

Answer: T

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} b_{n} & =\lim _{n \rightarrow \infty} a_{n} \lim _{n \rightarrow \infty} b_{n} \\
& =0
\end{aligned}
$$

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=0$ and b_{n} is bounded, then

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

Answer: T
Caution! The previous proof does not work.

Exercise (True or False)

If a_{n}^{2} is convergent, then a_{n} is convergent.

Answer: F

Example

For $a_{n}=(-1)^{n}, a_{n}^{2}$ converges to 1 but a_{n} is divergent.

Exercise (True or False)

If a_{n} is convergent, then $\left|a_{n}\right|$ is convergent.

Answer: T

Exercise (True or False)
 If $\left|a_{n}\right|$ is convergent, then a_{n} is convergent.

Answer: F

Exercise (True or False)

If a_{n} and b_{n} are divergent, then $a_{n}+b_{n}$ is divergent.

Answer: F

Example

The sequences $a_{n}=n$ and $b_{n}=-n$ are divergent but $a_{n}+b_{n}=0$ converges to 0 .

Exercise (True or False)

If a_{n} is convergent and $\lim _{n \rightarrow \infty} b_{n}= \pm \infty$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0 .
$$

Answer: T

Exercise (True or False)

If a_{n} is bounded and $\lim _{n \rightarrow \infty} b_{n}= \pm \infty$, then

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0 .
$$

Answer: T

Exercise (True or False)

Suppose a_{n} is bounded. Suppose b_{n} is a sequence and there exists N such that $b_{n}=a_{n}$ for any $n>N$. Then b_{n} is bounded.

Answer: T

Exercise (True or False)

Suppose $\lim _{n \rightarrow \infty} a_{n}=a$. Suppose b_{n} is a sequence and there exists N such that $b_{n}=a_{n}$ for any $n>N$. Then

$$
\lim _{n \rightarrow \infty} b_{n}=a .
$$

Answer: T

Exercise (True or False)

Suppose a_{n} and b_{n} are convergent sequences such that $a_{n}<b_{n}$ for any n. Then

$$
\lim _{n \rightarrow \infty} a_{n}<\lim _{n \rightarrow \infty} b_{n} .
$$

Answer: F

Example

There sequences $a_{n}=0$ and $b_{n}=\frac{1}{n}$ satisfy $a_{n}<b_{n}$ for any n. However

$$
\lim _{n \rightarrow \infty} a_{n} \nless \lim _{n \rightarrow \infty} b_{n}
$$

because both of them are 0 .

Exercise (True or False)

Suppose a_{n} and b_{n} are convergent sequences such that $a_{n} \leq b_{n}$ for any n. Then

$$
\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}
$$

Answer: T

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{n}=a$, then

$$
\lim _{n \rightarrow \infty} a_{2 n}=\lim _{n \rightarrow \infty} a_{2 n+1}=a
$$

Answer: T

Exercise (True or False)

If $\lim _{n \rightarrow \infty} a_{2 n}=\lim _{n \rightarrow \infty} a_{2 n+1}=a$, then

$$
\lim _{n \rightarrow \infty} a_{n}=a .
$$

Answer: T

Exercise (True or False)

If a_{n} is convergent, then

$$
\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0 .
$$

Answer: T

Exercise (True or False)

If $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0$, then a_{n} is convergent.

Answer: F

Example

Let $a_{n}=\sqrt{n}$. Then $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0$ and a_{n} is divergent.

Exercise (True or False)

If $\lim _{n \rightarrow \infty}\left(a_{n+1}-a_{n}\right)=0$ and a_{n} is bounded, then a_{n} is convergent.

Answer: F
Example

$$
0, \frac{1}{2}, 1, \frac{2}{3}, \frac{1}{3}, 0, \frac{1}{4}, \frac{2}{4}, \frac{3}{4}, 1, \frac{4}{5}, \frac{3}{5}, \frac{2}{5}, \frac{1}{5}, 0, \frac{1}{6}, \frac{2}{6}, \ldots
$$

Example

Let $a>0$ be a positive real number.

$$
\lim _{n \rightarrow \infty} a^{n}=\left\{\begin{array}{ll}
+\infty, & \text { if } a>1 \\
1, & \text { if } a=1 \\
0, & \text { if } 0<a<1
\end{array} .\right.
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{2 n-5}{3 n+1} & =\lim _{n \rightarrow \infty} \frac{2-\frac{5}{n}}{3+\frac{1}{n}} \\
& =\frac{2-0}{3+0} \\
& =\frac{2}{3}
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{n^{3}-2 n+7}{4 n^{3}+5 n^{2}-3} & =\lim _{n \rightarrow \infty} \frac{1-\frac{2}{n^{2}}+\frac{7}{n^{3}}}{4+\frac{5}{n}-\frac{3}{n^{3}}} \\
& =\frac{1}{4}
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3 n-\sqrt{4 n^{2}+1}}{3 n+\sqrt{9 n^{2}+1}} & =\lim _{n \rightarrow \infty} \frac{3-\frac{\sqrt{4 n^{2}+1}}{n}}{3+\frac{\sqrt{9 n^{2}+1}}{n}} \\
& =\lim _{n \rightarrow \infty} \frac{3-\sqrt{4+\frac{1}{n^{2}}}}{3+\sqrt{9+\frac{1}{n^{2}}}} \\
& =\frac{1}{6}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(n-\sqrt{n^{2}-4 n+1}\right) \\
= & \lim _{n \rightarrow \infty} \frac{\left(n-\sqrt{n^{2}-4 n+1}\right)\left(n+\sqrt{n^{2}-4 n+1}\right)}{n+\sqrt{n^{2}-4 n+1}} \\
= & \lim _{n \rightarrow \infty} \frac{n^{2}-\left(n^{2}-4 n+1\right)}{n+\sqrt{n^{2}-4 n+1}} \\
= & \lim _{n \rightarrow \infty} \frac{4 n-1}{n+\sqrt{n^{2}-4 n+1}} \\
= & \lim _{n \rightarrow \infty} \frac{4-\frac{1}{n}}{1+\sqrt{1-\frac{4}{n}+\frac{1}{n^{2}}}} \\
= & 2
\end{aligned}
$$

Example

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\ln \left(n^{4}+1\right)}{\ln \left(n^{3}+1\right)} & =\lim _{n \rightarrow \infty} \frac{\ln \left(n^{4}\left(1+\frac{1}{n^{4}}\right)\right)}{\ln \left(n^{3}\left(1+\frac{1}{n^{3}}\right)\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln n^{4}+\ln \left(1+\frac{1}{n^{4}}\right)}{\ln n^{3}+\ln \left(1+\frac{1}{n^{3}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{4 \ln n+\ln \left(1+\frac{1}{n^{4}}\right)}{3 \ln n+\ln \left(1+\frac{1}{n^{3}}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{4+\frac{\ln \left(1+\frac{1}{n^{4}}\right)}{\ln n}}{3+\frac{\ln \left(1+\frac{1}{n^{3}}\right)}{\ln n}} \\
& =\frac{4}{3}
\end{aligned}
$$

Theorem (Squeeze theorem)

Suppose a_{n}, b_{n}, c_{n} are sequences such that $a_{n} \leq b_{n} \leq c_{n}$ for any n and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$. Then b_{n} is convergent and

$$
\lim _{n \rightarrow \infty} b_{n}=L
$$

Theorem

If a_{n} is bounded and $\lim _{n \rightarrow \infty} b_{n}=0$, then $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.

Proof.

Since a_{n} is bounded, there exists M such that $-M<a_{n}<M$ for any n. Thus

$$
-M\left|b_{n}\right|<a_{n} b_{n}<M\left|b_{n}\right|
$$

for any n. Now

$$
\lim _{n \rightarrow \infty}\left(-M\left|b_{n}\right|\right)=\lim _{n \rightarrow \infty} M\left|b_{n}\right|=0
$$

Therefore by squeeze theorem, we have

$$
\lim _{n \rightarrow \infty} a_{n} b_{n}=0
$$

Example

Find $\lim _{n \rightarrow \infty} \frac{\sqrt{n}+(-1)^{n}}{\sqrt{n}-(-1)^{n}}$.

Solution

Since $(-1)^{n}$ is bounded and $\lim _{n \rightarrow \infty} \frac{1}{\sqrt{n}}=0$, we have $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{\sqrt{n}}=0$ and therefore

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\sqrt{n}+(-1)^{n}}{\sqrt{n}-(-1)^{n}} & =\lim _{n \rightarrow \infty} \frac{1+\frac{(-1)^{n}}{\sqrt{n}}}{1-\frac{(-1)^{n}}{\sqrt{n}}} \\
& =1
\end{aligned}
$$

Example

Show that $\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0$.

Proof.

Observe that for any $n \geq 3$,

$$
0<\frac{2^{n}}{n!}=2\left(\frac{2}{2} \cdot \frac{2}{3} \cdot \frac{2}{4} \cdots \frac{2}{n-1}\right) \frac{2}{n} \leq 2 \cdot \frac{2}{n}=\frac{4}{n}
$$

and $\lim _{n \rightarrow \infty} \frac{4}{n}=0$. By squeeze theorem, we have

$$
\lim _{n \rightarrow \infty} \frac{2^{n}}{n!}=0
$$

Theorem (Monotone convergence theorem)
 If a_{n} is bounded and monotonic, then a_{n} is convergent.

Bounded and Monotonic \Rightarrow Convergent

Example

Let a_{n} be the sequence defined by the recursive relation $\left\{a_{n+1}=\sqrt{a_{n}+1}\right.$ for $n \geq 1$
$a_{1}=1$
Find $\lim _{n \rightarrow \infty} a_{n}$.

n	a_{n}
1	1
2	1.414213562
3	1.553773974
4	1.598053182
5	1.611847754
10	1.618016542
15	1.618033940

Solution

Suppose $\lim _{n \rightarrow \infty} a_{n}=a$. Then $\lim _{n \rightarrow \infty} a_{n+1}=a$ and thus

$$
\begin{aligned}
a & =\sqrt{a+1} \\
a^{2} & =a+1 \\
a^{2}-a-1 & =0
\end{aligned}
$$

By solving the quadratic equation, we have

$$
a=\frac{1+\sqrt{5}}{2} \text { or } \frac{1-\sqrt{5}}{2} .
$$

It is obvious that a>0. Therefore

$$
a=\frac{1+\sqrt{5}}{2} \approx 1.6180339887
$$

Solution

The above solution is not complete. The solution is valid only after we have proved that $\lim _{n \rightarrow \infty} a_{n}$ exists and is positive. This can be done by using monotone convergent theorem. We are going to show that a_{n} is bounded and monotonic.
Boundedness
We prove that $1 \leq a_{n}<2$ for all $n \geq 1$ by induction.
(Base case) When $n=1$, we have $a_{1}=1$ and $1 \leq a_{1}<2$.
(Induction step) Assume that $1 \leq a_{k}<2$. Then

$$
\begin{aligned}
& a_{k+1}=\sqrt{a_{k}+1} \geq \sqrt{1+1}>1 \\
& a_{k+1}=\sqrt{a_{k}+1}<\sqrt{2+1}<2
\end{aligned}
$$

Thus $1 \leq a_{n}<2$ for any $n \geq 1$ which implies that a_{n} is bounded.

Solution

Monotonicity

We prove that $a_{n+1}>a_{n}$ for any $n \geq 1$ by induction.
(Base case) When $n=1, a_{1}=1, a_{2}=\sqrt{2}$ and thus $a_{2}>a_{1}$.
(Induction step) Assume that

$$
a_{k+1}>a_{k} \text { (Induction hypothesis). }
$$

Then

$$
\begin{aligned}
a_{k+2} & =\sqrt{a_{k+1}+1}>\sqrt{a_{k}+1} \text { (by induction hypothesis) } \\
& =a_{k+1}
\end{aligned}
$$

This completes the induction step and thus a_{n} is strictly increasing. We have proved that a_{n} is bounded and strictly increasing. Therefore a_{n} is convergent by monotone convergence theorem. Since $a_{n} \geq 1$ for any n, we have $\lim _{n \rightarrow \infty} a_{n} \geq 1$ is positive.

Theorem

Let

$$
\begin{aligned}
& a_{n}=\left(1+\frac{1}{n}\right)^{n} \\
& b_{n}=\sum_{k=0}^{n} \frac{1}{k!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}
\end{aligned}
$$

Then
(1) $a_{n}<b_{n}$ for any $n>1$.
(2) a_{n} and b_{n} are convergent and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}
$$

The limit of the two sequences is the important Euler's number

$$
e \approx 2.71828182845904523536 \ldots
$$

which is also known as the Napier's constant.

Proof

Observe that by binomial theorem,

$$
\begin{aligned}
a_{n}= & \left(1+\frac{1}{n}\right)^{n} \\
= & 1+n \cdot \frac{1}{n}+\frac{n(n-1)}{2!} \cdot \frac{1}{n^{2}}+\frac{n(n-1)(n-2)}{3!} \cdot \frac{1}{n^{3}}+\cdots+\frac{1}{n^{n}} \\
= & 1+1+\frac{1}{2!} \cdot \frac{n-1}{n}+\frac{1}{3!} \cdot \frac{(n-1)(n-2)}{n^{2}}+\cdots+\frac{1}{n!} \cdot \frac{(n-1) \cdots 1}{n^{n-1}} \\
= & 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots \\
& \quad+\frac{1}{n!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right)
\end{aligned}
$$

Proof.

Boundedness: For any $n>1$, we have

$$
\begin{aligned}
a_{n}= & 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots \\
& +\frac{1}{n!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) \\
< & 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}=b_{n} \\
\leq & 1+1+\frac{1}{2^{1}}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}} \\
= & 1+2\left(1-\frac{1}{2^{n}}\right) \\
< & 3 .
\end{aligned}
$$

Thus $1<a_{n}<b_{n}<3$ for any $n>1$. Therefore a_{n} and b_{n} are bounded.

Proof

Monotonicity: For any $n \geq 1$, we have

$$
\begin{aligned}
a_{n}= & 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots \\
& +\frac{1}{n!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) \\
< & 1+1+\frac{1}{2!}\left(1-\frac{1}{n+1}\right)+\frac{1}{3!}\left(1-\frac{1}{n+1}\right)\left(1-\frac{2}{n+1}\right)+\cdots \\
& +\frac{1}{n!}\left(1-\frac{1}{n+1}\right) \cdots\left(1-\frac{n-1}{n+1}\right) \\
& \quad+\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right) \cdots\left(1-\frac{n}{n+1}\right) \\
= & a_{n+1} .
\end{aligned}
$$

and it is obvious that $b_{n}<b_{n+1}$. Thus a_{n} are b_{n} are strictly increasing. Therefore a_{n} are b_{n} are convergent by monotone convergence theorem.

Proof

Alternative proof for monotonicity: Recall that the arithmetic-geometric mean inequality says that for any positive real numbers $x_{1}, x_{2}, \ldots, x_{k}$, not all equal, we have

$$
x_{1} x_{2} \cdots x_{k}<\left(\frac{x_{1}+x_{2}+\cdots+x_{k}}{k}\right)^{k} .
$$

Taking $k=n+1, x_{1}=1$ and $x_{i}=1+\frac{1}{n}$ for $i=2,3, \ldots, n+1$, we have

$$
\begin{aligned}
1 \cdot\left(1+\frac{1}{n}\right)^{n} & <\left(\frac{1+n\left(1+\frac{1}{n}\right)}{n+1}\right)^{n+1} \\
\left(1+\frac{1}{n}\right)^{n} & <\left(1+\frac{1}{n+1}\right)^{n+1}
\end{aligned}
$$

Proof

Since $a_{n}<b_{n}$ for any $n>1$, we have

$$
\lim _{n \rightarrow \infty} a_{n} \leq \lim _{n \rightarrow \infty} b_{n}
$$

On the other hand, for a fixed $m \geq 1$, define a sequence c_{n} (which depends on m) by

$$
\begin{aligned}
c_{n}=1 & +1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\frac{1}{3!}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots \\
& +\frac{1}{m!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right)
\end{aligned}
$$

Proof

Then for any $n>m$, we have $a_{n}>c_{n}$ which implies that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} a_{n} \geq & \lim _{n \rightarrow \infty} c_{n} \\
= & 1+1+\frac{1}{2!} \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)+\frac{1}{3!} \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)+\cdots \\
& \quad+\frac{1}{m!} \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{m-1}{n}\right) \\
= & 1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{m!} \\
= & b_{m} .
\end{aligned}
$$

Observe that m is arbitrary and thus

$$
\lim _{n \rightarrow \infty} a_{n} \geq \lim _{m \rightarrow \infty} b_{m}=\lim _{n \rightarrow \infty} b_{n} .
$$

Therefore

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}
$$

Example

Let $a_{n}=\frac{F_{n+1}}{F_{n}}$ where F_{n} is the Fibonacci's sequence defined by
$\left\{\begin{array}{l}F_{n+2}=F_{n+1}+F_{n}\end{array}\right.$
$F_{1}=F_{2}=1$
Find $\lim _{n \rightarrow \infty} a_{n}$.

$$
n \rightarrow \infty
$$

n	a_{n}
1	1
2	2
3	1.5
4	1.666666666
5	1.6
10	1.618181818
15	1.618032787
20	1.618033999

Theorem

For any $n \geq 1$,
(1) $F_{n+2} F_{n}-F_{n+1}^{2}=(-1)^{n+1}$
(2) $F_{n+3} F_{n}-F_{n+2} F_{n+1}=(-1)^{n+1}$

Proof

(1) When $n=1$, we have $F_{3} F_{1}-F_{2}^{2}=2 \cdot 1-1^{2}=1=(-1)^{2}$. Assume

$$
F_{k+2} F_{k}-F_{k+1}^{2}=(-1)^{k+1}
$$

Then

$$
\begin{aligned}
F_{k+3} F_{k+1}-F_{k+2}^{2} & =\left(F_{k+2}+F_{k+1}\right) F_{k+1}-F_{k+2}^{2} \\
& =F_{k+2}\left(F_{k+1}-F_{k+2}\right)+F_{k+1}^{2} \\
& =-F_{k+2} F_{k}+F_{k+1}^{2} \\
& =(-1)^{k+2} \text { (by induction hypothesis) }
\end{aligned}
$$

Therefore $F_{n+2} F_{n}-F_{n+1}^{2}=(-1)^{n+1}$ for any $n \geq 1$.

Proof.

The proof for the second statement is basically the same. When $n=1$, we have $F_{4} F_{1}-F_{3} F_{2}=3 \cdot 1-2 \cdot 1=1=(-1)^{2}$. Assume

$$
F_{k+3} F_{k}-F_{k+2} F_{k+1}=(-1)^{k+1}
$$

Then

$$
\begin{aligned}
F_{k+4} F_{k+1}-F_{k+3} F_{k+2} & =\left(F_{k+3}+F_{k+2}\right) F_{k+1}-F_{k+3} F_{k+2} \\
& =F_{k+3}\left(F_{k+1}-F_{k+2}\right)+F_{k+2} F_{k+1} \\
& =-F_{k+3} F_{k}+F_{k+2} F_{k+1} \\
& =-(-1)^{k+1} \text { (by induction hypothesis) } \\
& =(-1)^{k+2}
\end{aligned}
$$

Therefore $F_{n+3} F_{n}-F_{n+2} F_{n+1}=(-1)^{n+1}$ for any $n \geq 1$.

Theorem

Let $a_{n}=\frac{F_{n+1}}{F_{n}}$.
(1) The sequence $a_{1}, a_{3}, a_{5}, a_{7}, \cdots$, is strictly increasing.
(2) The sequence $a_{2}, a_{4}, a_{6}, a_{8}, \cdots$, is strictly decreasing.

Proof.

For any $k \geq 1$, we have

$$
\begin{aligned}
a_{2 k+1}-a_{2 k-1} & =\frac{F_{2 k+2}}{F_{2 k+1}}-\frac{F_{2 k}}{F_{2 k-1}}=\frac{F_{2 k+2} F_{2 k-1}-F_{2 k+1} F_{2 k}}{F_{2 k+1} F_{2 k-1}} \\
& =\frac{(-1)^{2 k}}{F_{2 k+1} F_{2 k-1}}=\frac{1}{F_{2 k+1} F_{2 k-1}}>0
\end{aligned}
$$

Therefore $a_{1}, a_{3}, a_{5}, a_{7}, \cdots$, is strictly increasing. The second statement can be proved in a similar way.

Theorem

$$
\lim _{k \rightarrow \infty}\left(a_{2 k+1}-a_{2 k}\right)=0
$$

Proof.

For any $k \geq 1$,

$$
\begin{aligned}
a_{2 k+1}-a_{2 k} & =\frac{F_{2 k+2}}{F_{2 k+1}}-\frac{F_{2 k+1}}{F_{2 k}} \\
& =\frac{F_{2 k+2} F_{2 k}-F_{2 k+1}^{2}}{F_{2 k+1} F_{2 k}}=\frac{1}{F_{2 k+1} F_{2 k}}
\end{aligned}
$$

Therefore

$$
\lim _{k \rightarrow \infty}\left(a_{2 k+1}-a_{2 k}\right)=\lim _{k \rightarrow \infty} \frac{1}{F_{2 k+1} F_{2 k}}=0 .
$$

Theorem

$$
\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{1+\sqrt{5}}{2}
$$

Proof

First we prove that $a_{n}=\frac{F_{n+1}}{F_{n}}$ is convergent.
a_{n} is bounded. ($1 \leq a_{n} \leq 2$ for any n.)
$a_{2 k+1}$ and $a_{2 k}$ are convergent. (They are bounded and monotonic.)

$$
\lim _{k \rightarrow \infty}\left(a_{2 k+1}-a_{2 k}\right)=0 \Rightarrow \lim _{k \rightarrow \infty} a_{2 k+1}=\lim _{k \rightarrow \infty} a_{2 k}
$$

It follows that a_{n} is convergent and

$$
\lim _{n \rightarrow \infty} a_{n}=\lim _{k \rightarrow \infty} a_{2 k+1}=\lim _{k \rightarrow \infty} a_{2 k}
$$

Proof.

To evaluate the limit, suppose $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=L$. Then

$$
\begin{gathered}
L=\lim _{n \rightarrow \infty} \frac{F_{n+2}}{F_{n+1}}=\lim _{n \rightarrow \infty} \frac{F_{n+1}+F_{n}}{F_{n+1}}=\lim _{n \rightarrow \infty}\left(1+\frac{F_{n}}{F_{n+1}}\right)=1+\frac{1}{L} \\
L^{2}-L-1=0
\end{gathered}
$$

By solving the quadratic equation, we have

$$
L=\frac{1+\sqrt{5}}{2} \text { or } \frac{1-\sqrt{5}}{2} .
$$

We must have $L \geq 1$ since $a_{n} \geq 1$ for any n. Therefore

$$
L=\frac{1+\sqrt{5}}{2}
$$

Remarks

The limit can be calculate directly using the formula

$$
\begin{aligned}
F_{n} & =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \\
& =\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
\end{aligned}
$$

where

$$
\alpha=\frac{1+\sqrt{5}}{2}, \beta=\frac{1-\sqrt{5}}{2}
$$

are the roots of the quadratic equation

$$
x^{2}-x-1=0
$$

Definition (Convergence of infinite series)

We say that an infinite series

$$
\sum_{k=1}^{\infty} a_{k}=a_{1}+a_{2}+a_{3}+\cdots
$$

is convergent if the sequence of partial sums
$s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$ is convergent. If the infinite series is convergent, then we define

$$
\sum_{k=1}^{\infty} a_{k}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k} .
$$

Definition (Absolute convergence)

We say that an infinite series $\sum_{k=1}^{\infty} a_{k}$ is absolutely convergent if $\sum_{k=1}^{\infty}\left|a_{k}\right|$ is convergent.

Example

Series	Convergency	Absolute convergency
$\sum_{k=0}^{\infty} \frac{1}{2^{k}}=1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots$	2	Yes
$\sum_{k=0}^{\infty} \frac{1}{k!}=1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots$	Yes	
$\sum_{k=1}^{\infty} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots$	divergent	No
$\sum_{k=1}^{\infty} \frac{1}{k^{2}}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+\cdots$	$\frac{\pi^{2}}{6}$	Yes
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots$	$\ln 2$	No
$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2 k-1}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots$	$\frac{\pi}{4}$	No

Theorem

If $\sum_{k=1}^{\infty} a_{k}$ is convergent, then $\lim _{k \rightarrow \infty} a_{k}=0$.
The converse is not true. $\lim _{k \rightarrow \infty} \frac{1}{k}=0$ but $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent.

Theorem

If $\sum_{k=1}^{\infty}\left|a_{k}\right|$ is convergent, then $\sum_{k=1}^{\infty} a_{k}$ is convergent.

Absolutely convergent \Rightarrow Convergent

The converse is not true. $\lim _{k \rightarrow \infty} \frac{(-1)^{k+1}}{k}$ is convergent but $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent.

Theorem (Comparison test for convergence)

If $0 \leq\left|a_{k}\right| \leq b_{k}$ for any k and $\sum_{k=0}^{\infty} b_{k}$ is convergent. Then $\sum_{k=0}^{\infty} a_{k}$ is convergent.

Theorem (Alternating series test)

If $a_{0}>a_{1}>a_{2}>\cdots>0$ is a decreasing sequence of positive real numbers and $\lim _{k \rightarrow \infty} a_{k}=0$, then $\sum_{k=0}^{\infty}(-1)^{k} a_{k}$ is convergent.

Definition (Exponential function)

The exponential function is defined for real number $x \in \mathbb{R}$ by

$$
\begin{aligned}
e^{x} & =\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n} \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots
\end{aligned}
$$

(1) It can be proved that the two limits in the definition exist and converge to the same value for any real number x.
(2) e^{x} is just a notation for the exponential function. One should not interpret it as ' e to the power x '.

Theorem

For any $x, y \in \mathbb{R}$, we have

$$
e^{x+y}=e^{x} e^{y}
$$

Caution! One cannot use law of indices to prove the above identity. It is because e^{x} is just a notation for the exponential function and it does not mean ' e to the power x '. In fact we have not defined what a^{x} means when x is a real number which is not rational.

Proof.

$$
\begin{aligned}
e^{x+y} & =\sum_{n=0}^{\infty} \frac{(x+y)^{n}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{n!}{m!(n-m)!} \cdot \frac{x^{m} y^{n-m}}{n!} \\
& =\sum_{n=0}^{\infty} \sum_{m=0}^{n} \frac{x^{m} y^{n-m}}{m!(n-m)!} \\
& =\sum_{m=0}^{\infty} \sum_{k=0}^{\infty} \frac{x^{m} y^{k}}{m!k!} \\
& =\sum_{m=0}^{\infty} \frac{x^{m}}{m!} \sum_{k=0}^{\infty} \frac{y^{k}}{k!} \\
& =e^{x} e^{y}
\end{aligned}
$$

Here we have changed the order of summation in the 4th equality. We can do this because the series for exponential function is absolutely convergent.

Theorem

(1) $e^{x}>0$ for any real number x.
(2) e^{x} is strictly increasing.

Proof.

(1) For any $x>0$, we have $e^{x}>1+x>1$. If $x<0$, then

$$
\begin{aligned}
e^{x} e^{-x} & =e^{x+(-x)}=e^{0}=1 \\
e^{x} & =\frac{1}{e^{-x}}>0
\end{aligned}
$$

since $e^{-x}>1$. Therefore $e^{x}>0$ for any $x \in \mathbb{R}$.
(2) Let x, y be real numbers with $x<y$. Then $y-x>0$ which implies $e^{y-x}>1$. Therefore

$$
e^{y}=e^{x+(y-x)}=e^{x} e^{y-x}>e^{x}
$$

Definition (Logarithmic function)

The logarithmic function is the function $\ln : \mathbb{R}^{+} \rightarrow \mathbb{R}$ defined for $x>0$ by

$$
y=\ln x \text { if } e^{y}=x
$$

In other words, $\ln x$ is the inverse function of e^{x}.
It can be proved that for any $x>0$, there exists unique real number y such that $e^{y}=x$.

Theorem

(1) $\ln x y=\ln x+\ln y$
(2) $\ln \frac{x}{y}=\ln x-\ln y$
(3) $\ln x^{n}=n \ln x$ for any integer $n \in \mathbb{Z}$.

Proof.

(1) Let $u=\ln x$ and $v=\ln y$. Then $x=e^{u}, y=e^{v}$ and we have

$$
x y=e^{u} e^{v}=e^{u+v}=e^{\ln x+\ln y}
$$

which means $\ln x y=\ln x+\ln y$.
Other parts can be proved similarly.

Definition (Cosine and sine functions)

The cosine and sine functions are defined for real number $x \in \mathbb{R}$ by the infinite series

$$
\begin{aligned}
& \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
& \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{aligned}
$$

(1) When the sine and cosine are interpreted as trigonometric ratios, the angles are measured in radian. $\left(180^{\circ}=\pi\right)$
(2) The series for cosine and sine are convergent for any real number $x \in \mathbb{R}$.

There are four more trigonometric functions namely tangent, cotangent, secant and cosecant functions. All of them are defined in terms of sine and cosine.

Definition (Trigonometric functions)

$$
\begin{aligned}
& \tan x=\frac{\sin x}{\cos x}, \text { for } x \neq \frac{2 k+1}{2} \pi, k \in \mathbb{Z} \\
& \cot x=\frac{\cos x}{\sin x}, \text { for } x \neq k \pi, k \in \mathbb{Z} \\
& \sec x=\frac{1}{\cos x}, \text { for } x \neq \frac{2 k+1}{2} \pi, k \in \mathbb{Z} \\
& \csc x=\frac{1}{\sin x}, \text { for } x \neq k \pi, k \in \mathbb{Z}
\end{aligned}
$$

Theorem (Trigonometric identities)

(1) $\cos ^{2} x+\sin ^{2} x=1 ; \quad \sec ^{2} x-\tan ^{2} x=1 ; \quad \csc ^{2} x-\cot ^{2} x=1$
(2) $\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y$;
$\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y ;$
$\tan (x \pm y)=\frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$
(3) $\cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos ^{2} x-1=1-2 \sin ^{2} x$;
$\sin 2 x=2 \sin x \cos x$;
$\tan 2 x=\frac{2 \tan x}{1-\tan ^{2} x}$
(4) $2 \cos x \cos y=\cos (x+y)+\cos (x-y)$
$2 \cos x \sin y=\sin (x+y)-\sin (x-y)$
$2 \sin x \sin y=\cos (x-y)-\cos (x+y)$
(5) $\cos x+\cos y=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$
$\cos x-\cos y=-2 \sin \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$
$\sin x+\sin y=2 \sin \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)$
$\sin x-\sin y=2 \cos \left(\frac{x+y}{2}\right) \sin \left(\frac{x-y}{2}\right)$

Definition (Hyperbolic function)

The hyperbolic functions are defined for $x \in \mathbb{R}$ by

$$
\begin{aligned}
& \cosh x=\frac{e^{x}+e^{-x}}{2}=1+\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\frac{x^{6}}{6!}+\cdots \\
& \sinh x=\frac{e^{x}-e^{-x}}{2}=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\frac{x^{7}}{7!}+\cdots
\end{aligned}
$$

Theorem (Hyperbolic identities)

(1) $\cosh ^{2} x-\sinh ^{2} x=1$
(2) $\cosh (x+y)=\cosh x \cosh y+\sinh x \sinh y$ $\sinh (x+y)=\sinh x \cosh y+\cosh x \sinh y$
(3) $\cosh 2 x=\cosh ^{2} x+\sinh ^{2} x=2 \cosh ^{2} x-1=1+2 \sinh ^{2} x$; $\sinh 2 x=2 \sinh x \cosh x$

Definition (Limit of function)

Let $f(x)$ be a real valued function.
(1) We say that a real number L is a limit of $f(x)$ at $x=a$ if for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\text { if } 0<|x-a|<\delta \text {, then }|f(x)-L|<\epsilon
$$

and write

$$
\lim _{x \rightarrow a} f(x)=L
$$

(2) We say that a real number L is a limit of $f(x)$ at $+\infty$ if for any $\epsilon>0$, there exists $R>0$ such that

$$
\text { if } x>R \text {, then }|f(x)-L|<\epsilon
$$

and write

$$
\lim _{x \rightarrow+\infty} f(x)=L
$$

The limit of $f(x)$ at $-\infty$ is defined similarly.
(1) Note that for the limit of $f(x)$ at $x=a$ to exist, $f(x)$ may not be defined at $x=a$ and even if $f(a)$ is defined, the value of $f(a)$ does not affect the value of the limit at $x=a$.
(2) The limit of $f(x)$ at $x=$ a may not exists. However the limit is unique if it exists.

Theorem (Limit of function and limit of sequence)

Let $f(x)$ be a real valued function. Then

$$
\lim _{x \rightarrow a} f(x)=L
$$

if and only if for any sequence x_{n} with $\lim _{n \rightarrow \infty} x_{n}=a$, we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=L .
$$

Theorem

Let $f(x), g(x)$ be functions and c be a real number. Then
(1) $\lim _{x \rightarrow a}(f(x)+g(x))=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(2) $\lim _{x \rightarrow a} c f(x)=c \lim _{x \rightarrow a} f(x)$
(3) $\lim _{x \rightarrow a} f(x) g(x)=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$
(9) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$.

Theorem

Let $f(u)$ be a function of u and $u=g(x)$ is a function of x. Suppose
(1) $\lim _{x \rightarrow a} g(x)=b \in[-\infty,+\infty]$
(2) $\lim _{u \rightarrow b} f(u)=L$
(3) $g(x) \neq b$ when $x \neq a$ or $f(b)=L$.

Then

$$
\lim _{x \rightarrow a} f \circ g(x)=L
$$

Theorem (Squeeze theorem)

Let $f(x), g(x), h(x)$ be real valued functions. Suppose
(1) $f(x) \leq g(x) \leq h(x)$ for any $x \neq$ a on a neighborhood of a, and
(2) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$.

Then the limit of $g(x)$ at $x=a$ exists and

$$
\lim _{x \rightarrow a} g(x)=L
$$

Theorem

Suppose $f(x)$ is bounded and $\lim _{x \rightarrow a} g(x)=0$. Then

$$
\lim _{x \rightarrow a} f(x) g(x)=0
$$

Theorem

(1) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
(2) $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$
(3) $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$
$x \rightarrow 0 \quad x$

Proof. $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$.

For any $-1<x<1$ with $x \neq 0$, we have

$$
\begin{aligned}
\frac{e^{x}-1}{x} & =1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\frac{x^{4}}{5!}+\cdots \\
& \leq 1+\frac{x}{2}+\left(\frac{x^{2}}{4}+\frac{x^{2}}{8}+\frac{x^{2}}{16}+\cdots\right)=1+\frac{x}{2}+\frac{x^{2}}{2} \\
\frac{e^{x}-1}{x} & =1+\frac{x}{2!}+\frac{x^{2}}{3!}+\frac{x^{3}}{4!}+\cdots \\
& \geq 1+\frac{x}{2}-\left(\frac{x^{2}}{4}+\frac{x^{2}}{8}+\frac{x^{2}}{16}+\cdots\right)=1+\frac{x}{2}-\frac{x^{2}}{2}
\end{aligned}
$$

and $\lim _{x \rightarrow 0}\left(1+\frac{x}{2}+\frac{x^{2}}{2}\right)=\lim _{x \rightarrow 0}\left(1+\frac{x}{2}-\frac{x^{2}}{2}\right)=1$. Therefore $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$.

Figure: $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$

Proof. $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}=1$.

Let $y=\ln (1+x)$. Then

$$
\begin{aligned}
e^{y} & =1+x \\
x & =e^{y}-1
\end{aligned}
$$

and $x \rightarrow 0$ as $y \rightarrow 0$. We have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x} & =\lim _{y \rightarrow 0} \frac{y}{e^{y}-1} \\
& =1
\end{aligned}
$$

Note that the first part implies $\lim _{y \rightarrow 0}\left(e^{y}-1\right)=0$.

Proof. $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Note that

$$
\frac{\sin x}{x}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\frac{x^{8}}{9!}-\frac{x^{10}}{11!}+\cdots
$$

For any $-1<x<1$ with $x \neq 0$, we have

$$
\begin{aligned}
\frac{\sin x}{x} & =1-\left(\frac{x^{2}}{3!}-\frac{x^{4}}{5!}\right)-\left(\frac{x^{6}}{7!}-\frac{x^{8}}{9!}\right)-\cdots \leq 1 \\
\frac{\sin x}{x} & =1-\frac{x^{2}}{6}+\left(\frac{x^{4}}{5!}-\frac{x^{6}}{7!}\right)+\left(\frac{x^{8}}{9!}-\frac{x^{10}}{11!}\right)+\cdots \geq 1-\frac{x^{2}}{6}
\end{aligned}
$$

and $\lim _{x \rightarrow 0} 1=\lim _{x \rightarrow 0}\left(1-\frac{x^{2}}{6}\right)=1$. Therefore

$$
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1
$$

Sequences

Limits and Continuity

Exponential, logarithmic and trigonometric functions

Figure: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$

Theorem

Let k be a positive integer.
(1) $\lim _{x \rightarrow+\infty} \frac{x^{k}}{e^{x}}=0$
(2) $\lim _{x \rightarrow+\infty} \frac{(\ln x)^{k}}{x}=0$

Proof.

(1) For any $x>0$,

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots>\frac{x^{k+1}}{(k+1)!}
$$

and thus

$$
0<\frac{x^{k}}{e^{x}}<\frac{(k+1)!}{x}
$$

Moreover $\lim _{x \rightarrow \infty} \frac{(k+1)!}{x}=0$. Therefore

$$
\lim _{x \rightarrow+\infty} \frac{x^{k}}{e^{x}}=0
$$

(2) Let $x=e^{y}$. Then $x \rightarrow+\infty$ as $y \rightarrow+\infty$ and $\ln x=y$. We have

$$
\lim _{x \rightarrow+\infty} \frac{(\ln x)^{k}}{x}=\lim _{y \rightarrow+\infty} \frac{y^{k}}{e^{y}}=0
$$

Example

1. $\lim _{x \rightarrow 4} \frac{x^{2}-16}{\sqrt{x}-2}$

$$
\begin{aligned}
& =\lim _{x \rightarrow 4} \frac{(x-4)(x+4)(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)} \\
& =\lim _{x \rightarrow 4} \frac{(x-4)(x+4)(\sqrt{x}+2)}{x-4} \\
& =\lim _{x \rightarrow 4}(x+4)(\sqrt{x}+2)=32
\end{aligned}
$$

2. $\lim _{x \rightarrow+\infty} \frac{3 e^{2 x}+e^{x}-x^{4}}{4 e^{2 x}-5 e^{x}+2 x^{4}}$
$=\lim _{x \rightarrow+\infty} \frac{3+e^{-x}-x^{4} e^{-2 x}}{4-5 e^{-x}+2 x^{4} e^{-2 x}}=\frac{3}{4}$
3. $\lim _{x \rightarrow+\infty} \frac{\ln \left(2 e^{4 x}+x^{3}\right)}{\ln \left(3 e^{2 x}+4 x^{5}\right)}=\lim _{x \rightarrow+\infty} \frac{4 x+\ln \left(2+x^{3} e^{-4 x}\right)}{2 x+\ln \left(3+4 x^{5} e^{-2 x}\right)}$

$$
=\lim _{x \rightarrow+\infty} \frac{4+\frac{\ln \left(2+x^{3} e^{-4 x}\right)}{x}}{2+\frac{\ln \left(3+4 x^{5} e^{-2 x}\right)}{x}}=2
$$

4. $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}-2 x}\right)$

$$
\begin{aligned}
& =\lim _{x \rightarrow-\infty} \frac{\left(x+\sqrt{x^{2}-2 x}\right)\left(x-\sqrt{x^{2}-2 x}\right)}{x-\sqrt{x^{2}-2 x}} \\
& =\lim _{x \rightarrow-\infty} \frac{2 x^{x-\sqrt{x^{2}-2 x}}}{x-\sqrt{1-\frac{2}{x}}}=1
\end{aligned}
$$

Example

5. $\lim _{x \rightarrow 0} \frac{\sin 6 x-\sin x}{\sin 4 x-\sin 3 x}=\lim _{x \rightarrow 0} \frac{\frac{6 \sin 6 x}{6 x}-\frac{\sin x}{x}}{\frac{4 \sin 4 x}{4 x}-\frac{3 \sin 3 x}{3 x}}=\frac{6-1}{4-3}=5$
6. $\lim _{x \rightarrow 0} \frac{1-\cos x}{x \tan x}=\lim _{x \rightarrow 0} \frac{(1-\cos x)(1+\cos x)}{x \frac{\sin x}{\cos x}(1+\cos x)}$
$=\lim _{x \rightarrow 0} \frac{\left(1-\cos ^{2} x\right) \cos x}{x \sin x(1+\cos x)}$
$=\lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right) \frac{\cos x}{1+\cos x}=\frac{1}{2}$
7. $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{\ln (1+3 x)}=\lim _{x \rightarrow 0} \frac{2}{3} \cdot \frac{e^{2 x}-1}{2 x} \cdot \frac{3 x}{\ln (1+3 x)}=\frac{2}{3}$
8. $\lim _{x \rightarrow 0} \frac{x \ln (1+\sin x)}{1-\sqrt{\cos x}}=\lim _{x \rightarrow 0} \frac{x(1+\sqrt{\cos x})(1+\cos x) \ln (1+\sin x)}{1-\cos ^{2} x}$
$=\lim _{x \rightarrow 0} \frac{x}{\sin x} \cdot \frac{\ln (1+\sin x)}{\sin x}(1+\sqrt{\cos x})(1+\cos x)$
$=4$

Definition (Continuity)

Let $f(x)$ be a real valued function. We say that $f(x)$ is continuous at $x=a$ if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

In other words, $f(x)$ is continuous at $x=a$ if for any $\epsilon>0$, there exists $\delta>0$ such that

$$
\text { if }|x-a|<\delta \text {, then }|f(x)-f(a)|<\epsilon .
$$

We say that $f(x)$ is continuous on an interval in \mathbb{R} if $f(x)$ is continuous at every point on the interval.

Theorem

Let $f(u)$ and $u=g(x)$ be functions. Suppose $f(u)$ is continuous and the limit of $g(x)$ at $x=a$ exists. Then

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)
$$

Theorem

(1) For any non-negative integer $n, f(x)=x^{n}$ is continuous on \mathbb{R}.
(2) The functions $e^{x}, \cos x, \sin x$ are continuous on \mathbb{R}.
(3) The logarithmic function $\ln x$ is continuous on \mathbb{R}^{+}.

Proof.

We prove the continuity of x^{n} and e^{x}.
(Continuity of x^{n})

$$
\lim _{x \rightarrow a} x=a \Rightarrow \lim _{x \rightarrow a} x^{n}=a^{n} .
$$

Thus x^{n} is continuous at $x=a$ for any real number a.
(Continuity of e^{x})

$$
\begin{aligned}
\lim _{x \rightarrow a} e^{x} & =\lim _{h \rightarrow 0} e^{a+h} \\
& =\lim _{h \rightarrow 0} e^{a} e^{h} \\
& =e^{a}
\end{aligned}
$$

Thus e^{x} is continuous at $x=a$ for any real number a.

Theorem

Suppose $f(x), g(x)$ are continuous functions and c is a real number. Then the following functions are continuous.
(1) $f(x)+g(x)$
(2) $c f(x)$
(3) $f(x) g(x)$
(9) $\frac{f(x)}{g(x)}$ at the points where $g(x) \neq 0$.
(5) $f \circ g(x)$

Theorem

A function $f(x)$ is continuous at $x=a$ if

$$
\lim _{x \rightarrow a^{+}} f(x)=\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

The theorem is usually used to check whether a piecewise defined function is continuous.

Example

Given that the function

$$
f(x)= \begin{cases}2 x-1 & \text { if } x<2 \\ a & \text { if } x=2 \\ x^{2}+b & \text { if } x>2\end{cases}
$$

is continuous at $x=2$. Find the value of a and b.

Solution

Note that

$$
\begin{aligned}
\lim _{x \rightarrow 2^{-}} f(x) & =\lim _{x \rightarrow 2^{-}}(2 x-1)=3 \\
\lim _{x \rightarrow 2^{+}} f(x) & =\lim _{x \rightarrow 2^{+}}\left(x^{2}+b\right)=4+b \\
f(2) & =a
\end{aligned}
$$

Since $f(x)$ is continuous at $x=2$, we have $3=4+b=a$ which implies $a=3$ and $b=-1$.

Definition (Intervals)

Let $a<b$ be real numbers. We define the intervals

$$
\begin{aligned}
(a, b) & =\{x \in \mathbb{R}: a<x<b\} \\
{[a, b] } & =\{x \in \mathbb{R}: a \leq x \leq b\} \\
(a, b] & =\{x \in \mathbb{R}: a<x \leq b\} \\
{[a, b) } & =\{x \in \mathbb{R}: a \leq x<b\} \\
(a,+\infty) & =\{x \in \mathbb{R}: a<x\} \\
{[a,+\infty) } & =\{x \in \mathbb{R}: a \leq x\} \\
(-\infty, b) & =\{x \in \mathbb{R}: x<b\} \\
(-\infty, b] & =\{x \in \mathbb{R}: x \leq b\} \\
(-\infty,+\infty) & =\mathbb{R}
\end{aligned}
$$

Definition (Open, closed and bounded sets)

Let $D \subset \mathbb{R}$ be a subset of \mathbb{R}.
(1) We say that D is open if for any $x \in D$, there exits $\epsilon>0$ such that $(x-\epsilon, x+\epsilon) \subset D$.
(2) We say that D is closed if for any sequence $x_{n} \in D$ of numbers in D which converges to $x \in \mathbb{R}$, we have $x \in D$.
(3) We say that D is bounded if there exists real number M such that for any $x \in D$, we have $|x|<M$.

Note that a subset $D \subset \mathbb{R}$ is open if and only if its complement $D^{c}=\{x \in \mathbb{R}: x \notin D\}$ in \mathbb{R} is closed.

Example

Let $a<b$ be real numbers.

Subset	open	closed	bounded
\emptyset	Yes	Yes	Yes
(a, b)	Yes	No	Yes
$[a, b]$	No	Yes	Yes
$(a, b],[a, b)$	No	No	Yes
$(a,+\infty),(-\infty, b)$	Yes	No	No
$[a,+\infty),(-\infty, b]$	No	Yes	No
$(-\infty,+\infty)$	Yes	Yes	No
$(-\infty, a) \cup[b,+\infty)$	No	No	No

Theorem (Intermediate value theorem)

Suppose $f(x)$ is a function which is continuous on a closed and bounded interval $[a, b]$. Then for any real number η between $f(a)$ and $f(b)$, there exists $\xi \in(a, b)$ such that $f(\xi)=\eta$.

Theorem (Extreme value theorem)

Suppose $f(x)$ is a function which is continuous on a closed and bounded interval $[a, b]$. Then there exists $\alpha, \beta \in[a, b]$ such that for any $x \in[a, b]$, we have

$$
f(\alpha) \leq f(x) \leq f(\beta)
$$

