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Problems that may be demonstrated in class :

Q1. Consider f(x) = − ln(1 − x). Compute its Taylor series at x = 0 and show that if
p4(x) is the Taylor polynomial of degree 4 of f at x = 0, then

|f(0.1)− p4(0.1)| < 10−5.

Hence compute the value of ln 0.9 by hand up to 4 decimal place.

Q2. Given that 1
x2−3x+2

= 1
x−2 −

1
x−1 , find the Taylor series of 1

x2−3x+2
at x = 0.

Q3. Find the Taylor series of 1
1−x at x = 2.

Q4. Let f be a differentiable function satisfying f ′(x) = 1− x+ f(x) for all x ∈ R and
f(0) = 2. Show that f(x) is infinitely differentiable and find its Taylor series at
x = 0.

Q5. Let f(x) =

{
sinx−x
x3

if x 6= 0

−1
6 if x = 0

. Use Taylor theorem to show that −1
6 ≤ f(x) ≤

−1
6 + x2

120 for x ∈ R.

Solutions:

Notice that if g1(x) = (a − x)−k where k is a positive integer and a ∈ R, then g
(n)
1 =

(k+n−1)!
(k−1)! (a − x)−k−n for all positive integer n. Also if g2(x) = h(−x) for some infinitely

differentiable function h, then g
(n)
2 (x) = (−1)nh(n)(−x) for all positive integer n.

Q1. Since f (n)(x) = (n− 1)!(1− x)−n for all positive integer n, fn(0) = (n− 1)! and f(0) =
− ln 1 = 0 and the Taylor series for f at x = 0 is

T (x) =

∞∑
k=0

f (k)(0)

k!
xk =

∞∑
k=1

(k − 1)!

k!
xk =

∞∑
k=1

xk

k
= x+

x2

2
+
x3

3
+ . . . .

So by Taylor theorem, there exists ξ ∈ (0, 0.1) such that |f(0.1)−p4(0.1)| = |f
(5)(ξ)
5! 0.15| =

|1−ξ|−5

5 10−5 ≤ 0.9−5

5 10−5 < 10−5. Now we compute p4(0.1) = 0.1 + 0.12/2 + 0.13/3 +
0.14/4 = 0.1+0.005+0.000333 . . .+0.000025 = 0.105358333 . . .. So | ln 0.9+0.10535833333| ≤
| − f(0.1) + p4(0.1)|+ 10−8/3 < 2 · 10−5 and ln 0.9 = −0.1054 correct to 4 decimal place.

Q2. Let fa(x) = 1
x−a for a > 0. f (n)(x) = (−1)nn!(x−a)−n−1 and f (n)(0) = (−1)nn!(−a)−n−1 =

−n!a−n−1. The Taylor series of 1
x−2 at x = 0 is

∞∑
k=0

f
(k)
2 (0)

k!
xk =

∞∑
k=0

−2−k−1xk and the

Taylor series of 1
x−2 at x = 0 is

∞∑
k=0

f
(k)
1 (0)

k!
xk =

∞∑
k=0

−1−k−1xk =

∞∑
k=0

−xk. Therefore the

Taylor series of 1
x2−3x+2

is

∞∑
k=0

−2−k−1xk −
∞∑
k=0

−xk =

∞∑
k=0

(−2−k−1 + 1)xk.
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Q3. Let f(x) = (1 − x)−1, then f (n)(x) = n!(1 − x)−n−1 and f (n)(2) = n!(1 − 2)−n−1 =
(−1)n+1n! for all positive integer n. Therefore the Taylor series at x = 2 is

∞∑
n=0

f (n)(2)

n!
(x− 2)n =

∑
(−1)n+1xn.

Q4. Since f ′(x) = 1−x+f(x) which is a sum of differentiable functions, f ′(x) is differentiable
and f ′′(x) = −1 + f ′(x). This again is differentiable for the same reason. f ′′′(x) = f ′′(x)
and so f (n+1)(x) = f (n)(x) for n ≥ 2. Therefore f is infinitely differentiable. Now
f(0) = 2 so f ′(0) = 1− 0 + f(0) = 3, f ′′(0) = −1 + f ′(0) = 2 and f (n)(0) = f (2)(0) = 2
for n ≥ 3. So the Taylor series of f(x) at x = 0 is

∞∑
n=0

f (n)(0)

n!
xn = 2 + 3x+

∞∑
n=2

2

n!
xn.

Q5. The Taylor series of sinx at x = 0 is x − x3

6 + x5

120 + · · · . For x 6= 0, by Taylor theorem,

sinx− (x− x3

6 ) = sin(ξ)
4! x4 and sinx− (x− x3

6 + x5

120) = − sin(ζ)
6! x6 for some ξ and ζ between

0 and x. So sinx−x
x3

+ 1
6 = sin(ξ)

4! x and sinx−x
x3

+ 1
6 −

x2

120 = − sin(ζ)
6! x3. For x ∈ [−π, π],

sin(ξ)x ≥ 0 and − sin(ζ)x3 ≤ 0. Therefore −1
6 + x2

120 ≥ f(x) ≥ −1
6 on [−π, π].

For x ≥ π, we use the following technique:

Lemma Let f, g be a continuously differentiable function on R and a ∈ R, assume we
have

1. f(a) > g(a), and

2. f ′(x) > g′(x) for all x > a.

Then f(x) > g(x) for all x ≥ a.

Proof: Observe that f − g is an increasing function on x ≥ a.

Corollary Let f, g be n-times continuously differentiable function on R and a ∈ R,
assume we have

1. f (k)(a) > g(k)(a) for k = 0, 1, . . . n− 1, and

2. f (n)(x) > g(n)(x) for all x > a.

Then f(x) > g(x) for all x ≥ a.

Proof: Induction or by using Taylor theorem on f − g at x = a.

Now f ′(x) = 2x−3 sinx+x cosx
x4

for x 6= 0. Since 2x− 3 sinx+ x cosx = x(1 + cosx) + (x−
3 sinx) > 0 for x ≥ π and 2x − 3 sinx + x cosx = x(1 + cosx) + (x − 3 sinx) < 0 for
x ≤ −π, f is increasing on x > π and decreasing on x < −π. So we have f(x) ≥ −1

6 for

all x. For the other inequality, let g(x) = −1
6 + x2

120 . Then g(π) > f(π) by previous step.
To show g′(x) > f ′(x) for x ≥ π, it suffices to show x5 > 60(2x − 3 sinx + x cosx) for
x ≥ π. The case x = π is just direct check. Notice that by differentiate once more, we
see that we reduce the problem to showing 5x4−120+180 cosx−60 cosx+60x sinx > 0
for x ≥ pi. Observe that 5x4−120+180 cosx−60 cosx+60x sinx ≥ 5x4−240−60x > 0
for x ≥ π. Therefore by the lemma and corollary we have proven the inequalities for
x ≥ π. Finally, for x ≤ −π, we observe that f(x) and −1

6 + x2

120 are even functions.
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