THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010D&E (2016/17 Term 1) University Mathematics Tutorial 7 Solutions

Problems that may be demonstrated in class :

Q1. Consider $f(x) = -\ln(1-x)$. Compute its Taylor series at x = 0 and show that if $p_4(x)$ is the Taylor polynomial of degree 4 of f at x = 0, then

$$|f(0.1) - p_4(0.1)| < 10^{-5}.$$

Hence compute the value of $\ln 0.9$ by hand up to 4 decimal place.

- Q2. Given that $\frac{1}{x^2 3x + 2} = \frac{1}{x 2} \frac{1}{x 1}$, find the Taylor series of $\frac{1}{x^2 3x + 2}$ at x = 0.
- Q3. Find the Taylor series of $\frac{1}{1-x}$ at x = 2.
- Q4. Let f be a differentiable function satisfying f'(x) = 1 x + f(x) for all $x \in \mathbb{R}$ and f(0) = 2. Show that f(x) is infinitely differentiable and find its Taylor series at x = 0.

Q5. Let
$$f(x) = \begin{cases} \frac{\sin x - x}{x^3} & \text{if } x \neq 0\\ -\frac{1}{6} & \text{if } x = 0 \end{cases}$$
. Use Taylor theorem to show that $-\frac{1}{6} \leq f(x) \leq -\frac{1}{6} + \frac{x^2}{120}$ for $x \in \mathbb{R}$.

Solutions:

Notice that if $g_1(x) = (a - x)^{-k}$ where k is a positive integer and $a \in \mathbb{R}$, then $g_1^{(n)} = \frac{(k+n-1)!}{(k-1)!}(a-x)^{-k-n}$ for all positive integer n. Also if $g_2(x) = h(-x)$ for some infinitely differentiable function h, then $g_2^{(n)}(x) = (-1)^n h^{(n)}(-x)$ for all positive integer n.

Q1. Since $f^{(n)}(x) = (n-1)!(1-x)^{-n}$ for all positive integer n, $f^n(0) = (n-1)!$ and $f(0) = -\ln 1 = 0$ and the Taylor series for f at x = 0 is

$$T(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^k = \sum_{k=1}^{\infty} \frac{(k-1)!}{k!} x^k = \sum_{k=1}^{\infty} \frac{x^k}{k!} = x + \frac{x^2}{2} + \frac{x^3}{3} + \dots$$

So by Taylor theorem, there exists $\xi \in (0, 0.1)$ such that $|f(0.1) - p_4(0.1)| = |\frac{f^{(5)}(\xi)}{5!} 0.1^5| = \frac{|1-\xi|^{-5}}{5} 10^{-5} \le \frac{0.9^{-5}}{5} 10^{-5} < 10^{-5}$. Now we compute $p_4(0.1) = 0.1 + 0.1^2/2 + 0.1^3/3 + 0.1^4/4 = 0.1 + 0.005 + 0.000333 \dots + 0.000025 = 0.105358333 \dots$ So $|\ln 0.9 + 0.1053583333| \le |-f(0.1) + p_4(0.1)| + 10^{-8}/3 < 2 \cdot 10^{-5}$ and $\ln 0.9 = -0.1054$ correct to 4 decimal place.

Q2. Let
$$f_a(x) = \frac{1}{x-a}$$
 for $a > 0$. $f^{(n)}(x) = (-1)^n n! (x-a)^{-n-1}$ and $f^{(n)}(0) = (-1)^n n! (-a)^{-n-1} = -n!a^{-n-1}$. The Taylor series of $\frac{1}{x-2}$ at $x = 0$ is $\sum_{k=0}^{\infty} \frac{f_2^{(k)}(0)}{k!} x^k = \sum_{k=0}^{\infty} -2^{-k-1}x^k$ and the Taylor series of $\frac{1}{x-2}$ at $x = 0$ is $\sum_{k=0}^{\infty} \frac{f_1^{(k)}(0)}{k!} x^k = \sum_{k=0}^{\infty} -1^{-k-1}x^k = \sum_{k=0}^{\infty} -x^k$. Therefore the Taylor series of $\frac{1}{x^2-3x+2}$ is $\sum_{k=0}^{\infty} -2^{-k-1}x^k - \sum_{k=0}^{\infty} -x^k = \sum_{k=0}^{\infty} (-2^{-k-1}+1)x^k$.

Q3. Let $f(x) = (1 - x)^{-1}$, then $f^{(n)}(x) = n!(1 - x)^{-n-1}$ and $f^{(n)}(2) = n!(1 - 2)^{-n-1} = (-1)^{n+1}n!$ for all positive integer *n*. Therefore the Taylor series at x = 2 is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!} (x-2)^n = \sum (-1)^{n+1} x^n.$$

Q4. Since f'(x) = 1 - x + f(x) which is a sum of differentiable functions, f'(x) is differentiable and f''(x) = -1 + f'(x). This again is differentiable for the same reason. f'''(x) = f''(x)and so $f^{(n+1)}(x) = f^{(n)}(x)$ for $n \ge 2$. Therefore f is infinitely differentiable. Now f(0) = 2 so f'(0) = 1 - 0 + f(0) = 3, f''(0) = -1 + f'(0) = 2 and $f^{(n)}(0) = f^{(2)}(0) = 2$ for $n \ge 3$. So the Taylor series of f(x) at x = 0 is

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n = 2 + 3x + \sum_{n=2}^{\infty} \frac{2}{n!} x^n.$$

- **Q5.** The Taylor series of $\sin x$ at x = 0 is $x \frac{x^3}{6} + \frac{x^5}{120} + \cdots$. For $x \neq 0$, by Taylor theorem, $\sin x - (x - \frac{x^3}{6}) = \frac{\sin(\xi)}{4!} x^4$ and $\sin x - (x - \frac{x^3}{6} + \frac{x^5}{120}) = \frac{-\sin(\zeta)}{6!} x^6$ for some ξ and ζ between 0 and x. So $\frac{\sin x - x}{x^3} + \frac{1}{6} = \frac{\sin(\xi)}{4!} x$ and $\frac{\sin x - x}{x^3} + \frac{1}{6} - \frac{x^2}{120} = \frac{-\sin(\zeta)}{6!} x^3$. For $x \in [-\pi, \pi]$, $\sin(\xi) x \ge 0$ and $-\sin(\zeta) x^3 \le 0$. Therefore $-\frac{1}{6} + \frac{x^2}{120} \ge f(x) \ge -\frac{1}{6}$ on $[-\pi, \pi]$. For $x \ge \pi$, we use the following technique:
 - **Lemma** Let f, g be a continuously differentiable function on \mathbb{R} and $a \in \mathbb{R}$, assume we have
 - 1. f(a) > g(a), and
 - 2. f'(x) > g'(x) for all x > a.
 - Then f(x) > g(x) for all $x \ge a$.
 - **Proof:** Observe that f g is an increasing function on $x \ge a$.
 - **Corollary** Let f, g be *n*-times continuously differentiable function on \mathbb{R} and $a \in \mathbb{R}$, assume we have
 - 1. $f^{(k)}(a) > g^{(k)}(a)$ for k = 0, 1, ..., n 1, and 2. $f^{(n)}(x) > g^{(n)}(x)$ for all x > a. Then f(x) > g(x) for all $x \ge a$.

Proof: Induction or by using Taylor theorem on f - g at x = a.

Now $f'(x) = \frac{2x-3\sin x + x\cos x}{x^4}$ for $x \neq 0$. Since $2x - 3\sin x + x\cos x = x(1 + \cos x) + (x - 3\sin x) > 0$ for $x \geq \pi$ and $2x - 3\sin x + x\cos x = x(1 + \cos x) + (x - 3\sin x) < 0$ for $x \leq -\pi$, f is increasing on $x > \pi$ and decreasing on $x < -\pi$. So we have $f(x) \geq -\frac{1}{6}$ for all x. For the other inequality, let $g(x) = -\frac{1}{6} + \frac{x^2}{120}$. Then $g(\pi) > f(\pi)$ by previous step. To show g'(x) > f'(x) for $x \geq \pi$, it suffices to show $x^5 > 60(2x - 3\sin x + x\cos x)$ for $x \geq \pi$. The case $x = \pi$ is just direct check. Notice that by differentiate once more, we see that we reduce the problem to showing $5x^4 - 120 + 180\cos x - 60\cos x + 60x\sin x > 0$ for $x \geq \pi$. Therefore by the lemma and corollary we have proven the inequalities for $x \geq \pi$. Finally, for $x \leq -\pi$, we observe that f(x) and $-\frac{1}{6} + \frac{x^2}{120}$ are even functions.