THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 7 Solutions

Problems that may be demonstrated in class :
Q1. Consider $f(x)=-\ln (1-x)$. Compute its Taylor series at $x=0$ and show that if $p_{4}(x)$ is the Taylor polynomial of degree 4 of f at $x=0$, then

$$
\left|f(0.1)-p_{4}(0.1)\right|<10^{-5} .
$$

Hence compute the value of $\ln 0.9$ by hand up to 4 decimal place.
Q2. Given that $\frac{1}{x^{2}-3 x+2}=\frac{1}{x-2}-\frac{1}{x-1}$, find the Taylor series of $\frac{1}{x^{2}-3 x+2}$ at $x=0$.
Q3. Find the Taylor series of $\frac{1}{1-x}$ at $x=2$.
Q4. Let f be a differentiable function satisfying $f^{\prime}(x)=1-x+f(x)$ for all $x \in \mathbb{R}$ and $f(0)=2$. Show that $f(x)$ is infinitely differentiable and find its Taylor series at $x=0$.
Q5. Let $f(x)=\left\{\begin{array}{ll}\frac{\sin x-x}{x^{3}} & \text { if } x \neq 0 \\ -\frac{1}{6} & \text { if } x=0\end{array}\right.$. Use Taylor theorem to show that $-\frac{1}{6} \leq f(x) \leq$ $-\frac{1}{6}+\frac{x^{2}}{120}$ for $x \in \mathbb{R}$.

Solutions:

Notice that if $g_{1}(x)=(a-x)^{-k}$ where k is a positive integer and $a \in \mathbb{R}$, then $g_{1}^{(n)}=$
$\frac{(k+n-1)!}{(k-1)!}(a-x)^{-k-n}$ for all positive integer n. Also if $g_{2}(x)=h(-x)$ for some infinitely differentiable function h, then $g_{2}^{(n)}(x)=(-1)^{n} h^{(n)}(-x)$ for all positive integer n.

Q1. Since $f^{(n)}(x)=(n-1)!(1-x)^{-n}$ for all positive integer $n, f^{n}(0)=(n-1)$! and $f(0)=$ $-\ln 1=0$ and the Taylor series for f at $x=0$ is

$$
T(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} x^{k}=\sum_{k=1}^{\infty} \frac{(k-1)!}{k!} x^{k}=\sum_{k=1}^{\infty} \frac{x^{k}}{k}=x+\frac{x^{2}}{2}+\frac{x^{3}}{3}+\ldots
$$

So by Taylor theorem, there exists $\xi \in(0,0.1)$ such that $\left|f(0.1)-p_{4}(0.1)\right|=\left|\frac{f^{(5)}(\xi)}{5!} 0.1^{5}\right|=$ $\frac{|1-\xi|^{-5}}{5} 10^{-5} \leq \frac{0.9^{-5}}{5} 10^{-5}<10^{-5}$. Now we compute $p_{4}(0.1)=0.1+0.1^{2} / 2+0.1^{3} / 3+$ $0.1^{4} / 4=0.1+0.005+0.000333 \ldots+0.000025=0.105358333 \ldots$. So $|\ln 0.9+0.10535833333| \leq$ $\left|-f(0.1)+p_{4}(0.1)\right|+10^{-8} / 3<2 \cdot 10^{-5}$ and $\ln 0.9=-0.1054$ correct to 4 decimal place.

Q2. Let $f_{a}(x)=\frac{1}{x-a}$ for $a>0 . f^{(n)}(x)=(-1)^{n} n!(x-a)^{-n-1}$ and $f^{(n)}(0)=(-1)^{n} n!(-a)^{-n-1}=$ $-n!a^{-n-1}$. The Taylor series of $\frac{1}{x-2}$ at $x=0$ is $\sum_{k=0}^{\infty} \frac{f_{2}^{(k)}(0)}{k!} x^{k}=\sum_{k=0}^{\infty}-2^{-k-1} x^{k}$ and the Taylor series of $\frac{1}{x-2}$ at $x=0$ is $\sum_{k=0}^{\infty} \frac{f_{1}^{(k)}(0)}{k!} x^{k}=\sum_{k=0}^{\infty}-1^{-k-1} x^{k}=\sum_{k=0}^{\infty}-x^{k}$. Therefore the Taylor series of $\frac{1}{x^{2}-3 x+2}$ is $\sum_{k=0}^{\infty}-2^{-k-1} x^{k}-\sum_{k=0}^{\infty}-x^{k}=\sum_{k=0}^{\infty}\left(-2^{-k-1}+1\right) x^{k}$.

Q3. Let $f(x)=(1-x)^{-1}$, then $f^{(n)}(x)=n!(1-x)^{-n-1}$ and $f^{(n)}(2)=n!(1-2)^{-n-1}=$ $(-1)^{n+1} n$! for all positive integer n. Therefore the Taylor series at $x=2$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(2)}{n!}(x-2)^{n}=\sum(-1)^{n+1} x^{n}
$$

Q4. Since $f^{\prime}(x)=1-x+f(x)$ which is a sum of differentiable functions, $f^{\prime}(x)$ is differentiable and $f^{\prime \prime}(x)=-1+f^{\prime}(x)$. This again is differentiable for the same reason. $f^{\prime \prime \prime}(x)=f^{\prime \prime}(x)$ and so $f^{(n+1)}(x)=f^{(n)}(x)$ for $n \geq 2$. Therefore f is infinitely differentiable. Now $f(0)=2$ so $f^{\prime}(0)=1-0+f(0)=3, f^{\prime \prime}(0)=-1+f^{\prime}(0)=2$ and $f^{(n)}(0)=f^{(2)}(0)=2$ for $n \geq 3$. So the Taylor series of $f(x)$ at $x=0$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=2+3 x+\sum_{n=2}^{\infty} \frac{2}{n!} x^{n} .
$$

Q5. The Taylor series of $\sin x$ at $x=0$ is $x-\frac{x^{3}}{6}+\frac{x^{5}}{120}+\cdots$. For $x \neq 0$, by Taylor theorem, $\sin x-\left(x-\frac{x^{3}}{6}\right)=\frac{\sin (\xi)}{4!} x^{4}$ and $\sin x-\left(x-\frac{x^{3}}{6}+\frac{x^{5}}{120}\right)=\frac{-\sin (\zeta)}{6!} x^{6}$ for some ξ and ζ between 0 and x. So $\frac{\sin x-x}{x^{3}}+\frac{1}{6}=\frac{\sin (\xi)}{4!} x$ and $\frac{\sin x-x}{x^{3}}+\frac{1}{6}-\frac{x^{2}}{120}=\frac{-\sin (\zeta)}{6!} x^{3}$. For $x \in[-\pi, \pi]$, $\sin (\xi) x \geq 0$ and $-\sin (\zeta) x^{3} \leq 0$. Therefore $-\frac{1}{6}+\frac{x^{2}}{120} \geq f(x) \geq-\frac{1}{6}$ on $[-\pi, \pi]$.
For $x \geq \pi$, we use the following technique:
Lemma Let f, g be a continuously differentiable function on \mathbb{R} and $a \in \mathbb{R}$, assume we have

1. $f(a)>g(a)$, and
2. $f^{\prime}(x)>g^{\prime}(x)$ for all $x>a$.

Then $f(x)>g(x)$ for all $x \geq a$.
Proof: Observe that $f-g$ is an increasing function on $x \geq a$.
Corollary Let f, g be n-times continuously differentiable function on \mathbb{R} and $a \in \mathbb{R}$, assume we have

1. $f^{(k)}(a)>g^{(k)}(a)$ for $k=0,1, \ldots n-1$, and
2. $f^{(n)}(x)>g^{(n)}(x)$ for all $x>a$.

Then $f(x)>g(x)$ for all $x \geq a$.
Proof: Induction or by using Taylor theorem on $f-g$ at $x=a$.
Now $f^{\prime}(x)=\frac{2 x-3 \sin x+x \cos x}{x^{4}}$ for $x \neq 0$. Since $2 x-3 \sin x+x \cos x=x(1+\cos x)+(x-$ $3 \sin x)>0$ for $x \geq \pi$ and $2 x-3 \sin x+x \cos x=x(1+\cos x)+(x-3 \sin x)<0$ for $x \leq-\pi, f$ is increasing on $x>\pi$ and decreasing on $x<-\pi$. So we have $f(x) \geq-\frac{1}{6}$ for all x. For the other inequality, let $g(x)=-\frac{1}{6}+\frac{x^{2}}{120}$. Then $g(\pi)>f(\pi)$ by previous step. To show $g^{\prime}(x)>f^{\prime}(x)$ for $x \geq \pi$, it suffices to show $x^{5}>60(2 x-3 \sin x+x \cos x)$ for $x \geq \pi$. The case $x=\pi$ is just direct check. Notice that by differentiate once more, we see that we reduce the problem to showing $5 x^{4}-120+180 \cos x-60 \cos x+60 x \sin x>0$ for $x \geq p i$. Observe that $5 x^{4}-120+180 \cos x-60 \cos x+60 x \sin x \geq 5 x^{4}-240-60 x>0$ for $x \geq \pi$. Therefore by the lemma and corollary we have proven the inequalities for $x \geq \pi$. Finally, for $x \leq-\pi$, we observe that $f(x)$ and $-\frac{1}{6}+\frac{x^{2}}{120}$ are even functions.

