THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 7

Taylor Theorem Let $f:(a, b) \rightarrow \mathbb{R}$ be a function such that the $n+1$-th derivative exists.
Let $p_{n}(x)$ be the Taylor polynomail of degree n of $f(x)$ at $x=c \in(a, b)$. Then for any $x \in(a, b)$, there exists ξ between c and x such that

$$
f(x)=p_{n}(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-c)^{n+1} .
$$

Taylor series Let $f:(a, b) \rightarrow \mathbb{R}$ be a function that has derivatives of all order. Then we define the Taylor series of f centered at $c \in(a, b)$ to be the power series

$$
T(x)=\sum_{k=0}^{\infty} \frac{f^{(k)}(c)}{k!}(x-c)^{k}=f(c)+f^{\prime}(c)(x-c)+\frac{f^{\prime \prime}(c)}{2!}(x-c)^{2}+\cdots .
$$

Warning: The Taylor series of an infinitely differentiable function at $x=a$ may or may not be equal to the original function at $x \neq a$, even though the Taylor series may converge for some $x \neq a$.

Operations on Taylor series Let f, g be infinitely differentiable functions and $T_{f}(x)=$ $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}, T_{y}(x)=\sum_{k=0}^{\infty} b_{k}(x-c)^{k}$ be their Taylor series at $x=c$ respectively. Let $\lambda \in \mathbb{R}$. Then we have

1. $T_{\lambda f}(x)=\sum_{k=0}^{\infty} \lambda a_{k}(x-c)^{k}$
2. $T_{f+g}(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right)(x-c)^{k}$
3. $T_{f g}(x)=\sum_{k=0}^{\infty} \sum_{i=0}^{k}\left(a_{i} b_{k-i}\right)(x-c)^{k}$
where $T_{h}(x)$ is the Taylor series of h at $x=c$.
Uniqueness of series If $\sum_{k=0}^{\infty} a_{k}(x-c)^{k}$ and $\sum_{k=0}^{\infty} b_{k}(x-c)^{k}$ are two series with real coefficient that are convergent and equal on an open non-empty interval I, then $a_{k}=b_{k}$ for all $k=0,1,2, \ldots$.

Differentiating a function defined by a power series Suppose the series $S(x)=\sum_{n=0}^{\infty} a_{n}(x-$ $c)^{n}$ converges for any x in an open interval $(c-R, c+R)$ for some $R>0$. When we view $S(x)$ as a function on $(c-R, c+R)$, it is differentiable and the value of its derivative at $x \in(c-R, c+R)$ can be given by a covergent series $S^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1}(x-c)^{n}$. In particular, if $T(x)$ is the Taylor series of an infinitely differentiable function $f(x)$ that converges on an open interval $(c-R, c+R)$ for some $R>0$, then $T^{\prime}(x)$ is the Taylor series of $f^{\prime}(x)$.

Problems that may be demonstrated in class :

Q1. Consider $f(x)=-\ln (1-x)$. Compute its Taylor series at $x=0$ and show that if $p_{4}(x)$ is the Taylor polynomial of degree 4 of f at $x=0$, then

$$
\left|f(0.1)-p_{4}(0.1)\right|<10^{-5}
$$

Hence compute the value of $\ln 0.9$ by hand up to 4 decimal place.
Q2. Given that $\frac{1}{x^{2}-3 x+2}=\frac{1}{x-2}-\frac{1}{x-1}$, find the Taylor series of $\frac{1}{x^{2}-3 x+2}$ at $x=0$.
Q3. Find the Taylor series of $\frac{1}{1-x}$ at $x=2$.
Q4. Let f be a differentiable function satisfying $f^{\prime}(x)=1-x+f(x)$ for all $x \in \mathbb{R}$ and $f(0)=2$. Show that $f(x)$ is infinitely differentiable and find its Taylor series at $x=0$.
Q5. Let $f(x)=\left\{\begin{array}{ll}\frac{\sin x-x}{x^{3}} & \text { if } x \neq 0 \\ -\frac{1}{6} & \text { if } x=0\end{array}\right.$. Use Taylor theorem to show that $-\frac{1}{6} \leq f(x) \leq$ $-\frac{1}{6}+\frac{x^{2}}{120}$ for all $x \in \mathbb{R}$.

