THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 6 Solutions

Problems that may be demonstrated in class :

Q1. By using mean value theorem, show that

$$
|\cos x-\cos y| \leq|x-y|
$$

for all $x, y \in \mathbb{R}$
Q2. Let $a, b \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function such that $f^{\prime}(x)>0$ for all $x \in[a, b]$. Show that f is increasing on (a, b) by using mean value theorem.
Q3. Consider the equation $\cos x=2 x$.
(a) Show that the equation has at least 1 solution.
(b) Show that the equation has at most 1 solution.

Q4. Let $f:[a, b] \rightarrow \mathbb{R} \backslash \mathbb{Q}$ be continuous. Prove that f must be a constant function.
Q5. Let $f:[0,1] \rightarrow(0,1)$ be a continuous function. Show that f has a fixed point in $(0,1)$. i.e.

$$
\exists c \in(0,1) \text { such that } f(c)=c
$$

Q6. (a) Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous on \mathbb{R} and that $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=0$. Prove that f is bounded on \mathbb{R} and attains either a maximum or minimum on \mathbb{R}.
(b) Give an example such that f attains either maximum or minimum, but not both.
Q7. Find the Taylor polynomial of degree 4 of the following functions at $x=0$
(a) $\ln (1+x)$
(b) $(1+x) \ln (1+x)$

Q8. (a) Find the Taylor series of $f(x)=\frac{1}{1-x}$
(b) What is the radius of convergence, R ?
(c) Is the Taylor series absolutely convergent when $x=R$ and $x=-R$ respectively?

Solution

Q1. Let $x, y \in \mathbb{R}$, and $f(z)=\cos z \forall z$. If $x=y$, the statement clearly holds.
For $x \neq y$, by mean value theorem, there exists $c \in(a, b)$ such that

$$
f^{\prime}(c)=\frac{f(x)-f(y)}{x-y}
$$

Therefore we have

$$
|\sin c|=\left|\frac{\cos x-\cos y}{x-y}\right|
$$

and thus

$$
\left|\frac{\cos x-\cos y}{x-y}\right| \leq 1 \quad \text { and } \quad|\cos x-\cos y| \leq|x-y|
$$

using the fact that $|\sin x| \leq 1 \forall x \in \mathbb{R}$

Q2. Let $x, y \in(a, b)$ with $x<y$. By mean value theorem, there exists $c \in(x, y) \subset(a, b)$ such that

$$
\frac{f(y)-f(x)}{y-x}=f^{\prime}(c)>0
$$

We then obtain

$$
f(y)-f(x)>0
$$

since $y-x>0$. Therefore f is increasing on (a, b)
Q3. (a) Let $f(x)=\cos (x)-2 x$. Note that $f\left(\frac{\pi}{2}\right)=-\pi<0$ and $f\left(-\frac{\pi}{2}\right)=\pi>0$. By intermediate value theorem, there exists $c \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that

$$
f(c)=0
$$

(b) Suppose there exists c_{1}, c_{2} with $c_{1}<c_{2}$ such that $f\left(c_{1}\right)=f\left(c_{2}\right)=0$. By mean value theorem, there exists $d \in\left(c_{1}, c_{2}\right)$ such that $f^{\prime}(d)=\frac{f\left(c_{1}\right)-f\left(c_{2}\right)}{c_{1}-c_{2}}=0$ i.e.

$$
-\sin d=2
$$

which is impossible. Therefore the above equation can have one and only one solution.
Q4. Suppose f is not a constant function. Then there exists $c_{1}, c_{2} \in[a, b]$, with $c_{1} \neq c_{2}$, such that $f\left(c_{1}\right)<f\left(c_{2}\right)$. Note that for any two irrational numbers x, y with $x<y$, we can always find $c \in \mathbb{Q}$ such that $x<c<y$. Let $c \in \mathbb{Q}$ such that $c \in\left(f\left(c_{1}\right), f\left(c_{2}\right)\right)$. By intermetidate value theorem, there exists $\xi \in\left(c_{1}, c_{2}\right)$ such that $f(\xi)=c$. It is impossible since $c \notin \mathbb{R} \backslash \mathbb{Q}$

Q5. Let $g(x)=f(x)-x$ for all $x \in[0,1]$. We have $g(1)=f(1)-1<0$ and $g(0)=f(0)>0$. By intermediate value theorem, there exists $c \in(0,1)$ such that $g(c)=0$. i.e. $f(c)=c$.

Q6. Assume f is not identically zero (otherwise maximum $=$ minimum $=0$). Choose $c \in \mathbb{R}$ such that $f(c) \neq 0$. Since $\lim _{x \rightarrow \pm \infty} f(x)=0$, there exists $N \in \mathbb{R}$ such that $|f(x)| \leq \frac{|f(c)|}{2}$ for all $|x|>N$. Note that $c \in[-N, N]$ by construction. Consider the interval $[-N, N]$. By extreme value theorem,

$$
\exists \alpha, \beta \text { such that } f(\alpha) \leq f(x) \leq f(\beta) \quad \forall x \in[-N, N]
$$

Since f is bounded on $[-N, N]$ and also bounded when $|x|>N . f$ is bounded on \mathbb{R}.
(i) Supoose $f(c)>0$. For all $|x|>N$ we have

$$
f(x) \leq \frac{f(c)}{2} \leq f(c) \leq f(\beta) \quad(\because c \in[-N, N])
$$

Hence $f(x) \leq f(\beta)$ for all $x \in \mathbb{R}$.
(ii) Supoose $f(c)<0$. For all $|x|>N$ we have

$$
f(x) \geq-\frac{|f(c)|}{2} \geq-|f(c)|=f(c) \geq f(\alpha) \quad(\because c \in[-N, N])
$$

Hence $f(x) \geq f(\alpha)$ for all $x \in \mathbb{R}$.

Q7. (a) Since $f(0)=0, f^{\prime}(0)=1, f^{\prime \prime}(0)=-1, f^{(3)}(0)=2, f^{(4)}(0)=-6$, we then have

$$
T_{4}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}
$$

(b) Let $S_{4}(x)$ be the Taylor polynomial of $(1+x) \ln (1+x)$. By (a), let $S(x)=(1+x) \cdot T_{4}(x)$

$$
S(x)=(1+x)\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}\right)=x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{12}-\frac{x^{5}}{4}
$$

Therefore $S_{4}(x)=x+\frac{x^{2}}{2}-\frac{x^{3}}{6}+\frac{x^{4}}{12}$
Q8. (a) Note that $f^{(n)}(0)=n$!. Therefore

$$
T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} x^{n}=\sum_{n=0}^{\infty} x^{n}
$$

(b) Note that the partial sum is

$$
S_{n}(x)=\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x}
$$

First it is easy to see that S_{n} diverges if $|x|>1$. Next, consider the following series:

$$
\sum_{k=0}^{n}\left|x^{k}\right|
$$

For $0 \leq x<1$,

$$
\sum_{k=0}^{n}\left|x^{k}\right|=\sum_{k=0}^{n} x^{k}=\frac{1-x^{n+1}}{1-x} \rightarrow \frac{1}{1-x} \quad \text { as } n \rightarrow \infty
$$

For $-1<x<0$, we have $0<y<1$, where $y=-x$. Hence

$$
\sum_{k=0}^{n}\left|x^{k}\right|=\sum_{k=0}^{n}\left|(-1)^{k} y^{k}\right|=\frac{1-y^{n+1}}{1-y} \rightarrow \frac{1}{1+x} \quad \text { as } n \rightarrow \infty
$$

Therefore we can conclude that $S(x)$ is absolutely convergent if $|x|<1$ and thus $R=1$. (c) If $x=1, S_{n}=\sum_{k=0}^{n} 1$, which does not converge. If $x=-1, S_{n}=\sum_{k=0}^{n}(-1)^{k}$, which is also divergent.

