THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010D&E (2016/17 Term 1) University Mathematics Tutorial 6 Solutions

Problems that may be demonstrated in class :

Q1. By using mean value theorem, show that

$$|\cos x - \cos y| \le |x - y|$$

for all $x, y \in \mathbb{R}$

- Q2. Let $a, b \in \mathbb{R}$ and $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function such that f'(x) > 0 for all $x \in [a, b]$. Show that f is increasing on (a, b) by using mean value theorem.
- Q3. Consider the equation $\cos x = 2x$.
 - (a) Show that the equation has at least 1 solution.
 - (b) Show that the equation has at most 1 solution.
- Q4. Let $f:[a,b] \to \mathbb{R} \setminus \mathbb{Q}$ be continuous. Prove that f must be a constant function.
- Q5. Let $f : [0,1] \to (0,1)$ be a continuous function. Show that f has a fixed point in (0,1). i.e.

$$\exists c \in (0,1)$$
 such that $f(c) = c$

Q6. (a) Suppose that $f : \mathbb{R} \to \mathbb{R}$ is continuous on \mathbb{R} and that $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0$. Prove that f is bounded on \mathbb{R} and attains either a maximum or minimum on \mathbb{R} . (b) Give an example such that f attains either maximum or minimum, but not both.

Q7. Find the Taylor polynomial of degree 4 of the following functions at x = 0(a) $\ln(1+x)$ (b) $(1+x) \ln(1+x)$

(b) $(1+x)\ln(1+x)$

Q8. (a) Find the Taylor series of $f(x) = \frac{1}{1-x}$

- (b) What is the radius of convergence, R?
- (c) Is the Taylor series absolutely convergent when x = R and x = -R respectively?

Solution

Q1. Let $x, y \in \mathbb{R}$, and $f(z) = \cos z \, \forall z$. If x = y, the statement clearly holds.

For $x \neq y$, by mean value theorem, there exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(x) - f(y)}{x - y}$$

Therefore we have

$$|\sin c| = \left| \frac{\cos x - \cos y}{x - y} \right|$$

and thus

$$\frac{\cos x - \cos y}{x - y} \le 1 \quad \text{and} \quad |\cos x - \cos y| \le |x - y|$$

using the fact that $|\sin x| \le 1 \ \forall x \in \mathbb{R}$

Q2. Let $x, y \in (a, b)$ with x < y. By mean value theorem, there exists $c \in (x, y) \subset (a, b)$ such that

$$\frac{f(y) - f(x)}{y - x} = f'(c) > 0$$

We then obtain

$$f(y) - f(x) > 0$$

since y - x > 0. Therefore f is increasing on (a, b)

Q3. (a) Let $f(x) = \cos(x) - 2x$. Note that $f(\frac{\pi}{2}) = -\pi < 0$ and $f(-\frac{\pi}{2}) = \pi > 0$. By intermediate value theorem, there exists $c \in (-\frac{\pi}{2}, \frac{\pi}{2})$ such that

f(c) = 0

(b) Suppose there exists c_1, c_2 with $c_1 < c_2$ such that $f(c_1) = f(c_2) = 0$. By mean value theorem, there exists $d \in (c_1, c_2)$ such that $f'(d) = \frac{f(c_1) - f(c_2)}{c_1 - c_2} = 0$ i.e.

$$-\sin d = 2$$

which is impossible. Therefore the above equation can have one and only one solution.

- **Q4.** Suppose f is not a constant function. Then there exists $c_1, c_2 \in [a, b]$, with $c_1 \neq c_2$, such that $f(c_1) < f(c_2)$. Note that for any two irrational numbers x, y with x < y, we can always find $c \in \mathbb{Q}$ such that x < c < y. Let $c \in \mathbb{Q}$ such that $c \in (f(c_1), f(c_2))$. By intermetidate value theorem, there exists $\xi \in (c_1, c_2)$ such that $f(\xi) = c$. It is impossible since $c \notin \mathbb{R} \setminus \mathbb{Q}$
- **Q5.** Let g(x) = f(x) x for all $x \in [0, 1]$. We have g(1) = f(1) 1 < 0 and g(0) = f(0) > 0. By intermediate value theorem, there exists $c \in (0, 1)$ such that g(c) = 0. i.e. f(c) = c.
- **Q6.** Assume f is not identically zero (otherwise maximum = minimum = 0). Choose $c \in \mathbb{R}$ such that $f(c) \neq 0$. Since $\lim_{x \to \pm \infty} f(x) = 0$, there exists $N \in \mathbb{R}$ such that $|f(x)| \leq \frac{|f(c)|}{2}$ for all |x| > N. Note that $c \in [-N, N]$ by construction. Consider the interval [-N, N]. By extreme value theorem,

$$\exists \alpha, \beta \text{ such that } f(\alpha) \leq f(x) \leq f(\beta) \quad \forall x \in [-N, N]$$

Since f is bounded on [-N, N] and also bounded when |x| > N. f is bounded on \mathbb{R} . (i) Suppose f(c) > 0. For all |x| > N we have

$$f(x) \le \frac{f(c)}{2} \le f(c) \le f(\beta) \quad (\because c \in [-N, N])$$

Hence $f(x) \leq f(\beta)$ for all $x \in \mathbb{R}$. (ii) Suppose f(c) < 0. For all |x| > N we have

$$f(x) \ge -\frac{|f(c)|}{2} \ge -|f(c)| = f(c) \ge f(\alpha) \quad (\because c \in [-N, N])$$

Hence $f(x) \ge f(\alpha)$ for all $x \in \mathbb{R}$.

Q7. (a) Since $f(0) = 0, f'(0) = 1, f''(0) = -1, f^{(3)}(0) = 2, f^{(4)}(0) = -6$, we then have

$$T_4(x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}$$

(b) Let $S_4(x)$ be the Taylor polynomial of $(1+x)\ln(1+x)$. By (a), let $S(x) = (1+x) \cdot T_4(x)$

$$S(x) = (1+x)\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4}\right) = x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{12} - \frac{x^5}{4}$$

Therefore $S_4(x) = x + \frac{x^2}{2} - \frac{x^3}{6} + \frac{x^4}{12}$

Q8. (a) Note that $f^{(n)}(0) = n!$. Therefore

$$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}}{n!} x^n = \sum_{n=0}^{\infty} x^n$$

(b) Note that the partial sum is

$$S_n(x) = \sum_{k=0}^n x^k = \frac{1 - x^{n+1}}{1 - x}$$

First it is easy to see that S_n diverges if |x| > 1. Next, consider the following series:

$$\sum_{k=0}^{n} |x^k|$$

For $0 \le x < 1$,

$$\sum_{k=0}^{n} |x^{k}| = \sum_{k=0}^{n} x^{k} = \frac{1 - x^{n+1}}{1 - x} \to \frac{1}{1 - x} \quad \text{as } n \to \infty$$

For -1 < x < 0, we have 0 < y < 1, where y = -x. Hence

$$\sum_{k=0}^{n} |x^{k}| = \sum_{k=0}^{n} |(-1)^{k} y^{k}| = \frac{1 - y^{n+1}}{1 - y} \to \frac{1}{1 + x} \quad \text{as } n \to \infty$$

Therefore we can conclude that S(x) is absolutely convergent if |x| < 1 and thus R = 1. (c) If x = 1, $S_n = \sum_{k=0}^n 1$, which does not converge. If x = -1, $S_n = \sum_{k=0}^n (-1)^k$, which is also divergent.