THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010D&E (2016/17 Term 1) University Mathematics Tutorial 5 Solutions

Problems that may be demonstrated in class :

- Q1. Determine whether the following functions are differentiable at the specified points. If yes, find the derivatives at those points.
 - (a) $\frac{\pi}{8}(1+x^2)^{\frac{8}{\pi}\arctan x}$ at x=1;
 - (b) $|\tan \pi x \arcsin x|$ at x = 0;
 - (c) $\max\{e^x \sin x, -x^3\}$ at x = 0.
- Q2. Use L'Hopital's rule to evaluate the following limits. (a) $\lim_{x\to+\infty} \frac{x^2-6x+2}{e^x}$; (b) $\lim_{x\to 0} (\cosh x)^{\cot x}$; (c) $\lim_{x\to -\infty} (1+x^2)^{\pi/2+\arctan x}$.
- Q3. Find $\frac{dy}{dx}$ for the implicit function $x^2 + y^2 = e^{x^2 y^2}$.
- Q4. Suppose a differentiable function $f : \mathbb{R} \to \mathbb{R}$ satisfies f(x) = f(x+1) for any $x \in \mathbb{R}$.
 - (a) Prove that there exist $\alpha, \beta \in \mathbb{R}$ such that

$$f(\alpha) \le f(x) \le f(\beta)$$
 for any $x \in \mathbb{R}$.

- (b) Prove that f'(x+1) = f'(x) for any $x \in \mathbb{R}$.
- (c) Let $\alpha, \beta \in \mathbb{R}$ and $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in \mathbb{R}$. Prove that there exists $\xi \in \mathbb{R}$ such that $f(\beta) f(\alpha) \leq f'(\xi) \leq \xi$.
- Q5. Suppose $n \in \mathbb{Z}^+$ and $a_1, ..., a_n$ are positive real numbers. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} \left(\frac{a_1^x + \dots + a_n^x}{n}\right)^{1/x}, & \text{if } x \neq 0; \\ \sqrt[n]{a_1 \cdots a_n}, & \text{if } x = 0. \end{cases}$$

- (a) Show that f is a continuous at 0.
- (b) Show that $\lim_{x \to +\infty} f(x) = \max\{a_1, ..., a_n\}$ and $\lim_{x \to -\infty} f(x) = \min\{a_1, ..., a_n\}$.
- Q6. Let $f : \mathbb{R} \to \mathbb{R}$ be an injective continuous function, $a, b \in \mathbb{R}$, a < b and $f(b) \leq f(a)$.
 - (a) Show that f(b) < f(x) < f(a) for any $x \in (a, b)$ (Hint: use intermediate value theorem).
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable. Prove that $f'(x) \leq 0$ for any $x \in (a, b)$.
- Q7. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable, f(f(x)) = x for any $x \in \mathbb{R}$ but $f(x) \neq x$.
 - (a) Verify that $f : \mathbb{R} \to \mathbb{R}$ is injective.
 - (b) Prove that f has a fixed point $\xi \in \mathbb{R}$, i.e. $f(\xi) = \xi$, such that $f'(\xi) = -1$.

Solutions :

Q1. (a) Let $f(x) = \frac{\pi}{8}(1+x^2)^{\frac{8}{\pi}\arctan x}$. Then

$$f(1) = \frac{\pi}{8}(1+1^2)^{\frac{8}{\pi}\arctan 1} = \frac{\pi}{8} \cdot 2^{\frac{8}{\pi}\frac{\pi}{4}} = \frac{\pi}{2},$$

$$\frac{f'(x)}{f(x)} = \frac{d}{dx}(\ln f(x)) = \frac{d}{dx}\left(\frac{8}{\pi}\arctan x\ln(1+x^2) + \ln \pi - \ln 8\right),$$

$$= \frac{8}{\pi}\left(\ln(1+x^2)\frac{d}{dx}\arctan x + \arctan x\frac{d}{dx}\ln(1+x^2)\right),$$

$$= \frac{8}{\pi}\left(\frac{1}{1+x^2}\ln(1+x^2) + \frac{2x}{1+x^2}\arctan x\right),$$

$$\therefore f'(x) = \frac{8f(x)}{\pi}\left(\frac{1}{1+x^2}\ln(1+x^2) + \frac{2x}{1+x^2}\arctan x\right),$$

$$f'(1) = \frac{8}{\pi} \cdot \frac{\pi}{2}\left(\frac{1}{2}\ln 2 + \frac{\pi}{4}\right) = 4\left(\frac{1}{2}\ln 2 + \frac{\pi}{4}\right) = \pi + \ln 4.$$

(b) Let $f(x) = |\tan \pi x \arcsin x|$. When $0 \le x < 1/2$, $\tan \pi x \ge 0$ and $\arcsin x \ge 0$, thus $f(x) = \tan \pi x \arcsin x$. When -1/2 < x < 0, $\tan \pi x < 0$ and $\arcsin x < 0$, thus $f(x) = \tan \pi x \arcsin x$. Therefore,

$$f'(0) = \frac{d}{dx} \left(\tan \pi x \arcsin x \right) \Big|_{x=0} = \left(\pi \sec^2 \pi x \arcsin x + \frac{\tan \pi x}{\sqrt{1-x^2}} \right) \Big|_{x=0}$$
$$= \pi \cdot 1 \cdot 0 + \frac{0}{\sqrt{1-0^2}} = 0.$$

(c) Let $f(x) = \max\{e^x \sin x, -x^3\}$. When $0 \le x \le \pi$, $e^x \sin x \ge 0 \ge -x^3$ and thus $f(x) = e^x \sin x$. When $-\pi < x < 0$, $e^x \sin x < 0 < -x^3$ and thus $f(x) = -x^3$.

$$\lim_{h \to 0^+} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{e^h \sin h - 0}{h} = \frac{d}{dx} e^x \sin x \Big|_{x=0}$$
$$= (e^x \sin x + e^x \cos x)|_{x=0} = 1,$$
$$\lim_{h \to 0^-} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{-h^3 - 0}{h} = \frac{d}{dx} x^3 \Big|_{x=0} = 3x^2|_{x=0} = 0 \neq 1.$$

Therefore, f(x) is not differentiable at x = 0.

Q2. (a)

$$\lim_{x \to +\infty} \frac{x^2 - 6x + 2}{e^x} = \lim_{x \to +\infty} \frac{\frac{d}{dx}(x^2 - 6x + 2)}{\frac{d}{dx}e^x} = \lim_{x \to +\infty} \frac{2x - 6}{e^x}$$
$$= \lim_{x \to +\infty} \frac{\frac{d}{dx}(2x - 6)}{\frac{d}{dx}e^x} = \lim_{x \to +\infty} \frac{2}{e^x} = 0.$$

(b)

$$\lim_{x \to 0} \cot x \ln \cosh x = \lim_{x \to 0} \frac{\ln \cosh x}{\tan x} = \lim_{x \to 0} \frac{\frac{d}{dx} \ln \cosh x}{\frac{d}{dx} \tan x} = \lim_{x \to 0} \frac{1}{\sec^2 x} \cdot \frac{\sinh x}{\cosh x} = 0,$$
$$\lim_{x \to 0} (\cosh x)^{\cot x} = \lim_{x \to 0} e^{\cot x \ln \cosh x} = e^0 = 1.$$

$$\lim_{x \to -\infty} \left(\frac{\pi}{2} + \arctan x\right) \ln(1+x^2)$$

$$= \lim_{x \to -\infty} \frac{\frac{\pi}{2} + \arctan x}{\frac{1}{\ln(1+x^2)}} = \lim_{x \to -\infty} \frac{\frac{1}{1+x^2}}{(\ln(1+x^2))^2 \cdot \frac{2x}{1+x^2}} = \lim_{x \to -\infty} \frac{-(\ln(1+x^2))^2}{2x}$$

$$= \lim_{x \to -\infty} \frac{-2\ln(1+x^2) \cdot \frac{2x}{1+x^2}}{2} = \lim_{x \to -\infty} \frac{-2\ln(1+x^2)}{x+\frac{1}{x}} = \lim_{x \to -\infty} \frac{\frac{4x}{1+x^2}}{\frac{1}{x^2}-1}$$

$$= \lim_{x \to -\infty} \frac{4x^3}{1-x^4} = \lim_{x \to -\infty} \frac{\frac{4}{x}}{\frac{1}{x^4}-1} = 0.$$

Thus, $\lim_{x\to-\infty} (1+x^2)^{\frac{\pi}{2}+\arctan x} = \lim_{x\to-\infty} e^{(\frac{\pi}{2}+\arctan x)\ln(1+x^2)} = e^0 = 1.$ Q3. Differentiating on both sides,

$$2x + 2y\frac{dy}{dx} = e^{x^2 - y^2} \left(2x - 2y\frac{dy}{dx}\right),$$
$$x + y\frac{dy}{dx} = x(x^2 + y^2) - y(x^2 + y^2)\frac{dy}{dx},$$
$$y(x^2 + y^2 + 1)\frac{dy}{dx} = x(x^2 + y^2 - 1),$$
$$\therefore \frac{dy}{dx} = \frac{x(x^2 + y^2 - 1)}{y(x^2 + y^2 + 1)}.$$

Q4. (a) f is in particular continuous on the closed and bounded interval [0, 1]. By extreme value theorem, there exist $\alpha, \beta \in [0, 1]$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in [0, 1]$. Consider any $x \in \mathbb{R}$. Let $n = \lfloor x \rfloor$, i.e. n be the integral part of x. Then $n \leq x < n + 1$ and hence $0 \leq x - n < 1$. We have

$$f(\alpha) \le f(x-n) = f(x) \le f(\beta).$$

(b) Fix $x \in \mathbb{R}$. By differentiability of f,

$$f'(x+1) = \lim_{h \to 0} \frac{f(x+1+h) - f(x+1)}{h} = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x).$$

(c) Let $n = \lfloor \beta - \alpha \rfloor$ and $\gamma = \beta - n$. Then $n \leq \beta - \alpha < n+1$ and thus $0 \leq \gamma - \alpha < 1$. By Lagrange's mean value theorem, there exists $\eta \in (\alpha, \gamma)$ such that

$$f'(\eta) = \frac{f(\gamma) - f(\alpha)}{\gamma - \alpha} = \frac{f(\beta) - f(\alpha)}{\gamma - \alpha} \ge f(\beta) - f(\alpha).$$

Define $m = \lfloor \eta - f'(\eta) \rfloor$ and $\xi = \eta - m$. Then $m \leq \eta - f'(\eta)$ and therefore $f(\beta) - f(\alpha) \leq f'(\xi) = f'(\xi - m) = f'(\eta) \leq \eta - m = \xi$.

Q5. (a) Let $g(x) = \ln f(x)$ and h(x) = x for any $x \in \mathbb{R}$. Note that $h'(x) = 1 \neq 0$ for any $x \in \mathbb{R}$, $\lim_{x \to 0} [\ln(a_1^x + \dots + a_n^x) - \ln n] = \lim_{x \to 0} h(x) = 0$, and

$$\lim_{x \to 0} \frac{\frac{d}{dx} (\ln(a_1^x + \dots + a_n^x) - \ln n)}{\frac{dx}{dx}} = \lim_{x \to 0} \frac{a_1^x \ln a_1 + \dots + a_n^x \ln a_n}{a_1^x + \dots + a_n^x} = \frac{\ln a_1 + \dots + \ln a_n}{n} = \ln \sqrt[n]{a_1 \dots a_n} = \ln f(0).$$

By L'Hopital's rule,

$$\lim_{x \to 0} g(x) = \lim_{x \to 0} \frac{\ln(a_1^x + \dots + a_n^x) - \ln n}{x} = \ln f(0)$$

We know that the exponential function $\mathbb{R} \to \mathbb{R}$ given by $x \mapsto e^x$ is continuous. Therefore, $f : \mathbb{R} \to \mathbb{R}$ is continuous at 0 since

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} e^{g(x)} = e^{\ln f(0)} = f(0)$$

(b) Without loss of generality, assume $a_1 \leq \cdots \leq a_n$. For any x > 0,

$$\frac{a_n^x}{n} < \frac{a_1^x + \dots + a_n^x}{n} \le \frac{na_n^x}{n} = a_n^x \text{ and thus } \frac{a_n}{\sqrt[x]{n}} < f(x) \le a_n.$$

Because $\lim_{x\to+\infty} \frac{a_n}{\sqrt[x]{n}} = a_n$, by Sandwich theorem, $\lim_{x\to+\infty} f(x) = a_n$. On the other hand, for any x < 0,

$$\frac{a_1^x}{n} < \frac{a_1^x + \dots + a_n^x}{n} \le \frac{na_1^x}{n} = a_1^x \text{ and thus } a_1 \le f(x) < \frac{a_1}{\sqrt[x]{n}}$$

Because $\lim_{x\to\infty} \frac{a_1}{x/n} = a_1$, by Sandwich theorem, $\lim_{x\to\infty} f(x) = a_1$.

- Q6. (a) Fix $x \in (a, b)$. We claim $f(x) \leq f(a)$. Assume the contrary that f(x) > f(a). Define $c = \frac{1}{2}(f(a) + f(x))$. Then $f(b) \leq f(a) < c < f(x)$ and by intermediate value theorem, $\exists \xi_0 \in (a, x)$ and $\xi_1 \in (x, b)$ such that $f(\xi_0) = f(\xi_1) = c$. But this violates injectivity of f. Thus, $f(x) \leq f(a)$. By injectivity of f, f(x) < f(a). Define g(y) = -f(-y) for any $y \in \mathbb{R}$. Suppose $y, z \in \mathbb{R}$ and g(y) = g(z). Then f(-y) = -g(y) = -g(z) = f(-z). By injectivity of f, -y = -z, whence y = z. Then $g : \mathbb{R} \to \mathbb{R}$ is injective. Now we have -b < -x < -a and g(-a) = -f(a) < -f(b) = g(-b). Applying the previous argument, we have g(-x) < g(-b) and hence f(b) = -g(-b) < -g(-x) < f(x).
 - (b) Consider any $x, y \in (a, b)$ with x < y. f(b) < f(x) by (a). Since x < y < b, applying (a) again, f(y) < f(x). Therefore, f is strictly decreasing on (a, b). We can conclude that $f'(x) \le 0$ for any $x \in (a, b)$.
- Q7. (a) If $x, y \in \mathbb{R}$ and f(x) = f(y), then x = f(f(x)) = f(f(y)) = y. f is injective.
 - (b) Because f is not the identity function, there exists $x_0 \in \mathbb{R}$ such that $f(x_0) \neq x_0$. Let $a = \min\{x_0, f(x_0)\}$ and $b = \max\{x_0, f(x_0)\}$. Then f(b) = a < b = f(a). Define a continuous function g(x) = f(x) - x for any $x \in \mathbb{R}$. We check that g(a) = f(a) - a = b - a > 0 and g(b) = f(b) - b = a - b < 0. By intermediate value theorem, $\exists \xi \in (a, b)$ such that $f(\xi) - \xi = g(\xi) = 0$, whence $f(\xi) = \xi$. ξ is a fixed point of f. By (a) and Q6(b), $f'(\xi) \leq 0$. By chain rule,

$$[f'(\xi)]^2 = f'(f(\xi))f'(\xi) = (f \circ f)'(\xi) = \left. \frac{dx}{dx} \right|_{x=\xi} = 1.$$

Therefore, $f'(\xi) = -1$.