THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 5

Differentiability A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be differentiable at $a \in \mathbb{R}$ if the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists, in which case this limit is called the derivative of f at a and is denoted by $f^{\prime}(a)$. $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be differentiable if it is differentiable at every point in \mathbb{R}.

- If we write $y=f(x)$ and $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a, we may also denote $f^{\prime}(a)$ by another notation $\left.\frac{d y}{d x}\right|_{x=a}$. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, by $\frac{d y}{d x}$ we mean the function $\left.a \mapsto \frac{d y}{d x}\right|_{x=a}$.
- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a, then it is continuous at a.
- Higher derivatives: for $n \in \mathbb{Z}^{+}$, the n-derivative of f at a, denoted by $f^{(n)}(a)$ (or $\left.\frac{d^{y} y}{d x^{n}}\right|_{x=a}$ if we write $y=f(x)$), is defined as the derivative of $f^{(n-1)}(x)$ at a if they exist, where by convention, $f^{(0)}(a)=f(a)$.

Basic rules of differentiation Sum rule, product rule, chain rule and Leibniz rule.
Implicit function Let $F(x, y)=0$ be an implicit function. Then

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0 \quad \text { and } \quad \frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}
$$

Mean value theorem Suppose a, b are real numbers and $a<b$.

1. Lagrange's. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b). Then there exists $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

2. Cauchy's. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x) \neq 0$ for any $x \in(a, b)$. Then there exists $\xi \in(a, b)$ such that

$$
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Remark. Rolle's theorem is used to prove mean value theorems. But once we have proved the latter, the former would become a special case.

Relationship between derivatives and monotonicity Suppose $a, b \in \mathbb{R}$ and $a<b$.

1. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at a and attains a local extremum at a, then $f^{\prime}(a)=0$.
2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on (a, b). Then $f: \mathbb{R} \rightarrow \mathbb{R}$ is monotonic increasing (decreasing) on (a, b) if and only if $f^{\prime}(x) \geq 0\left(f^{\prime}(x) \leq 0\right)$ for any $x \in(a, b)$.
3. If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable on (a, b) and $f^{\prime}(x)>0\left(f^{\prime}(x)<0\right)$ for any $x \in(a, b)$, then it is strictly increasing (decreasing) on (a, b).

L'Hopital's rule Let $a \in \mathbb{R}$ and $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable functions. If

1. $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=L_{0}$, where either $L_{0}=0$ or $L_{0}= \pm \infty$;
2. There exists $\delta>0$ such that $g^{\prime}(x) \neq 0$ for any $x \in(a-\delta, a+\delta)$ with $x \neq a$;
3. $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$, where $L \in[-\infty, \infty]$.
then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L$.
L'Hopital's rule can be applied to indeterminate forms like $\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, 0^{0}, \infty^{0}, 1^{\infty}$.

Problems that may be demonstrated in class :

Q1. Determine whether the following functions are differentiable at the specified points. If yes, find the derivatives at those points.
(a) $\frac{\pi}{8}\left(1+x^{2}\right)^{\frac{8}{\pi}} \arctan x$ at $x=1$;
(b) $|\tan \pi x \arcsin x|$ at $x=0$;
(c) $\max \left\{e^{x} \sin x,-x^{3}\right\}$ at $x=0$.

Q2. Use L'Hopital's rule to evaluate the following limits.
(a) $\lim _{x \rightarrow+\infty} \frac{x^{2}-6 x+2}{e^{x}}$; (b) $\lim _{x \rightarrow 0}(\cosh x)^{\cot x}$; (c) $\lim _{x \rightarrow-\infty}\left(1+x^{2}\right)^{\pi / 2+\arctan x}$.

Q3. Find $\frac{d y}{d x}$ for the implicit function $x^{2}+y^{2}=e^{x^{2}-y^{2}}$.
Q4. Suppose a differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(x)=f(x+1)$ for any $x \in \mathbb{R}$.
(a) Prove that there exist $\alpha, \beta \in \mathbb{R}$ such that

$$
f(\alpha) \leq f(x) \leq f(\beta) \quad \text { for any } x \in \mathbb{R} .
$$

(b) Prove that $f^{\prime}(x+1)=f^{\prime}(x)$ for any $x \in \mathbb{R}$.
(c) Let $\alpha, \beta \in \mathbb{R}$ and $f(\alpha) \leq f(x) \leq f(\beta)$ for any $x \in \mathbb{R}$. Prove that there exists $\xi \in \mathbb{R}$ such that $f(\beta)-f(\alpha) \leq f^{\prime}(\xi) \leq \xi$.
Q5. Suppose $n \in \mathbb{Z}^{+}$and a_{1}, \ldots, a_{n} are positive real numbers. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}\left(\frac{a_{1}^{x}+\cdots+a_{n}^{x}}{n}\right)^{1 / x}, & \text { if } x \neq 0 \\ \sqrt[n]{a_{1} \cdots a_{n}}, & \text { if } x=0\end{cases}
$$

(a) Show that f is a continuous at 0 .
(b) Show that $\lim _{x \rightarrow+\infty} f(x)=\max \left\{a_{1}, \ldots, a_{n}\right\}$ and $\lim _{x \rightarrow-\infty} f(x)=\min \left\{a_{1}, \ldots, a_{n}\right\}$.

Q6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an injective continuous function, $a, b \in \mathbb{R}, a<b$ and $f(b) \leq f(a)$.
(a) Show that $f(b)<f(x)<f(a)$ for any $x \in(a, b)$ (Hint: use intermediate value theorem).
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable. Prove that $f^{\prime}(x) \leq 0$ for any $x \in(a, b)$.

Q7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable, $f(f(x))=x$ for any $x \in \mathbb{R}$ but $f(x) \not \equiv x$.
(a) Verify that $f: \mathbb{R} \rightarrow \mathbb{R}$ is injective.
(b) Prove that f has a fixed point $\xi \in \mathbb{R}$, i.e. $f(\xi)=\xi$, such that $f^{\prime}(\xi)=-1$.

