THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 4

Properties of limit Let $f, g: \mathbb{R} \rightarrow \mathbb{R}$ be functions such that their limit at $x=a$ exist for some $a \in \mathbb{R}$. Then we have

1. $\lim _{x \rightarrow a}(f(x) \pm g(x))=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)$.
2. $\lim _{x \rightarrow a}(f(x) g(x))=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} g(x)$.
3. $\lim _{x \rightarrow a}(c f(x))=c \lim _{x \rightarrow a} f(x)$ for some $c \in \mathbb{R}$.
4. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}$ if $\lim _{x \rightarrow a} g(x) \neq 0$.

Squeeze theorem Let $f(x), g(x), h(x)$ be real valued functions and $a \in \mathbb{R}$. Suppose

1. $f(x) \leq g(x) \leq h(x)$ for any $x \neq a$ in an open interval (c, d) containing a.
2. $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$ for some $L \in \mathbb{R}$.

Then $\lim _{x \rightarrow a} g(x)=L$.
Continuity A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is said to be continuous at a if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

f is said to be continuous if it is continuous at a for all a in its domain.
Sum, product, and composition of continuous functions are continuous.
If a function is continuous at a and its value at a is non-zero, then its reciprocal is continuous at a.
Given a sequence of real numbers $\left\{x_{n}\right\}$ which has a limit $a \in \mathbb{R}$ and a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that it is continuous at a, we have

$$
\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(a)
$$

Examples of continuous function $x^{n}, e^{x}, \sin x, \cos x$ are continuous on \mathbb{R} for all positive integer n.
$\ln x, \sqrt[n]{x}$ are continuous on $(0, \infty)$ for all positive integer n.
Intermediate value theorem Suppose $f(x)$ is a continuous function on a closed and bounded interval $[a, b]$. Then for any real number c between $f(a)$ and $f(b)$ (exclusive), there exists $\zeta \in(a, b)$ such that $f(\zeta)=c$.

Extreme value theorem Suppose $f(x)$ is a continuous function on a closed and bounded interval $[a, b]$. Then there exists $\alpha, \beta \in[a, b]$ such that for any $x \in[a, b]$, we have

$$
f(\alpha) \leq f(x) \leq f(\beta)
$$

Problems that may be demonstrated in class :

Q1. Find the limit of the following expressions.

1. $\lim _{x \rightarrow 0} \frac{\ln \left(x^{4}+x^{2}+3\right)}{\ln \left(x^{6}+6 x^{4}+9\right)}$
2. $\lim _{x \rightarrow \infty} \frac{\ln \left(x^{4}+x^{2}+3\right)}{\ln \left(x^{6}+6 x^{4}+9\right)}$
3. $\lim _{x \rightarrow \infty} e^{-x} \tanh x$
4. $\lim _{x \rightarrow 0} \frac{(\ln (\sec (x)))^{2}}{\cos (\sin (\tan (x)))}$
5. $\lim _{x \rightarrow 0} \frac{\sin \left(e^{2 x^{2}}-1\right)}{e^{2 x^{2}}-1}$
6. $\lim _{x \rightarrow 0} x \cos \left(\frac{1}{x}\right)$

Q2. Determine where the function $f(x)=\left\{\begin{array}{ll}x \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{array}\right.$ is continuous.
Q3. Given that the function $f(x)=\left\{\begin{array}{ll}e^{-\frac{1}{x}} \sin \left(\cos \frac{1}{x}\right) & \text { if } x>0 \\ a & \text { if } x=0 \\ b e^{\sin ^{\frac{1}{x}}} & \text { if } x<0\end{array}\right.$ is continuous on \mathbb{R} where $a, b \in \mathbb{R}$. Find the value of a and b.
Q4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function such that $f(x)=f(x / 2)$ for all real number x. Show that $f(x)=f(0)$ for all real number x.
Q5. Show that every (univariate) polynomial of odd degree (with real coefficients) has a root in real numbers.
Q6. Consider $f(x)=\left\{\begin{array}{ll}\sqrt[2016]{x} \sin \left(2 e^{1 / x}\right)+1 & \text { if } x>0 \\ 1 & \text { if } x \leq 0\end{array}\right.$.
(a) Show that f is a continuous function on \mathbb{R}.
(b) Prove that f has a fixed point in the interval $[0,1]$. (That is, there exists $x \in[0,1]$ such that $f(x)=x$.)

