THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 3 Solutions

Problems that may be demonstrated in class :
Given that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent, and $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
Q1. Are the following infinite series convergent? Prove it.
(a) $\sum_{n=1}^{\infty} \frac{\cos n}{n^{4}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n-2}}$
(d) $\sum_{n=1}^{\infty} \frac{4^{n}}{3^{n}+1}$
(e) $\sum_{n=2}^{\infty} \frac{n}{\ln n}$
(f) $\sum_{n=1}^{\infty}(-1)^{n}$

Q2. By using comparison test, prove the following statement: If $\sum_{n=1}^{\infty} a_{n}$ with $a_{n}>0$ is convergent, then $\sum_{n=1}^{\infty} a_{n}^{2}$ is convergent.
Q3. (a) If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent and $\left(b_{n}\right)$ is a bounded sequence, show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ is absolutely convergent.
(b) Give an example such that the above statement is false if absolutely convergent is replaced by convergent.
Q4. Compute the following limits:
(a) $\lim _{x \rightarrow 1}(x+1)$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
(c) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$
(d) $\lim _{x \rightarrow \infty} \frac{6 e^{4 x}-e^{-2 x}}{8 e^{5 x}-e^{2 x}+3 e^{-x}}$
(e) $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}+x}$
(f) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+7 x+5}{5 x^{2}+2}$
(g) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
(h) $\lim _{x \rightarrow 1} \frac{x^{5}-1}{x-1}$

Q5. (a) Let $a \in \mathbb{R}$. Show that if $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a}[f(x)]^{2}$ exist.
(b) Is the converse true? Prove or disprove.

Solution Q1. (a) Note that $\frac{|\cos n|}{n^{4}} \leq \frac{1}{n^{4}} \leq \frac{1}{n^{2}}$ for all $n \geq 1$.
By comparison test, $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ is convergent.
(b) Note that $\frac{1}{(n+1)(n+2)} \leq \frac{1}{n^{2}}$ for all $n \geq 1$.

By comparison test, $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$ is convergent.
(c) Since $\frac{1}{\sqrt{3 n-2}} \geq \frac{1}{\sqrt{3 n}} \geq \frac{1}{\sqrt{3} n}$ for all $n \geq 1$.

By comparison test, $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n-2}}$ is divergent.
(d) Since $\lim _{n \rightarrow \infty} \frac{4^{n}}{3^{n}+1}=\infty \neq 0, \sum_{n=1}^{\infty} \frac{4^{n}}{3^{n}+1}$ is divergent.
(e) Since $\frac{n}{\ln n} \geq 1 \forall n \geq 2$, therefore $\lim _{n \rightarrow \infty} \frac{n}{\ln n} \neq 0$ and $\sum_{n=2}^{\infty} \frac{n}{\ln n}$ is divergent.
(f) There are two methods.

- Observe that

$$
\begin{aligned}
& s_{2 n}=\sum_{k=1}^{2 n}(-1)^{k}=(-1)+1+(-1)+\cdots+(-1)+1=0 \\
& s_{2 n+1}=\sum_{k=1}^{2 n+1}(-1)^{k}=(-1)+1+(-1)+\cdots+1+(-1)=-1
\end{aligned}
$$

Therefore the sequence $\left\{s_{n}\right\}$ is not convergent. Therefore we have $\sum_{n=0}^{\infty}(-1)^{n}$ is divergent.

- Since $\lim _{n \rightarrow \infty}(-1)^{n} \neq 0$, therefore $\sum_{n=0}^{\infty}(-1)^{n}$ is divergent.

Q2. Since $\sum_{n=0}^{\infty} a_{n}$ converges, we have $\lim _{n \rightarrow \infty} a_{n}=0$, which implies that there exists N such that

$$
a_{n}<1 \text { for all } n \geq N
$$

By comparison test, we have $\sum_{n=N}^{\infty} a_{n}^{2}$ converge, and so does $\sum_{n=1}^{\infty} a_{n}^{2}$
Q3. (a) By assumption, we have
(i) $\quad \sum_{n=0}^{\infty}\left|a_{n}\right|$ converges
(ii) There exists M such that $\left|b_{n}\right|<=M$ for all $n \geq 1$

Note also that $\left|a_{n} b_{n}\right| \leq M\left|a_{n}\right|$ for all $n \geq 1$ and by comparison test, we have $\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right|$ converges.
(b) Consider $a_{n}=\frac{(-1)^{n}}{n}, b_{n}=(-1)^{n}$

Q4. (a) 2
(b)

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1}(x+1)=2
$$

(c) Note that for any $-1 \leq x \leq 1$

$$
\begin{aligned}
& \frac{e^{x}-1}{x}=\frac{1+x+\frac{x^{2}}{2}+\cdots-1}{x} \leq 1+\frac{x}{2}+\left(\frac{x^{2}}{4}+\frac{x^{2}}{8}+\cdots\right)=1+\frac{x}{2}+\frac{x^{2}}{2} \\
& \frac{e^{x}-1}{x}=\frac{1+x+\frac{x^{2}}{2}+\cdots-1}{x} \geq 1+\frac{x}{2}-\left(\frac{x^{2}}{4}+\frac{x^{2}}{8}+\cdots\right)=1+\frac{x}{2}-\frac{x^{2}}{2}
\end{aligned}
$$

By squeeze theorem, we have $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}=1$
(d)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{6 e^{4 x}-e^{-2 x}}{8 e^{5 x}-e^{2 x}+3 e^{-x}} & =\lim _{x \rightarrow \infty} \frac{e^{-5 x}\left(6 e^{4 x}-e^{-2 x}\right)}{e^{-5 x}\left(8 e^{5 x}-e^{2 x}+3 e^{-x}\right)} \\
& =\lim _{x \rightarrow \infty} \frac{6 e^{-x}-e^{-7 x}}{8-e^{-3 x}+3 e^{-6 x}} \\
& =0
\end{aligned}
$$

(e)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} \frac{3 x^{2}+7 x+5}{5 x^{2}+2} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{x^{2}}\left(3 x^{2}+7 x+5\right)}{\frac{1}{x^{2}}\left(5 x^{2}+2\right)} \\
& =\lim _{x \rightarrow \infty} \frac{3+7 x^{-1}+5 x^{-2}}{5+2 x^{-2}} \\
& =\frac{3}{5}
\end{aligned}
$$

(f)

$$
\begin{aligned}
\lim _{x \rightarrow \infty} x-\sqrt{x^{2}+x} & =\lim _{x \rightarrow \infty} \frac{x^{2}-\left(x^{2}+x\right)}{x+\sqrt{x^{2}+x}} \\
& =\lim _{x \rightarrow \infty} \frac{x}{x+\sqrt{x^{2}+x}} \\
& =\lim _{x \rightarrow \infty} \frac{1}{1+\sqrt{1+\frac{1}{x}}} \\
& =\frac{1}{2}
\end{aligned}
$$

(g) Since $-|x| \leq x \sin \frac{1}{x} \leq|x| \forall x \neq 0$, and $\lim _{x \rightarrow 0}|x|=\lim _{x \rightarrow 0}-|x|=0$, by squeeze theorem,

$$
\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0
$$

(h) Note that $x^{5}-1=(x-1)\left(x^{4}+x^{3}+x^{2}+x+1\right)$

$$
\lim _{x \rightarrow 1} \frac{x^{5}-1}{x-1}=\lim _{x \rightarrow 1}\left(x^{4}+x^{3}+x^{2}+x+1\right)=5
$$

Q5. (a) Assume $\lim _{x \rightarrow a}=L$. Then

$$
\lim _{x \rightarrow a}[f(x)]^{2}=\lim _{x \rightarrow a} f(x) f(x)=\lim _{x \rightarrow a} f(x) \lim _{x \rightarrow a} f(x)=L^{2}
$$

(b) No. We can disprove by providing a counter-example. Consider the following function:

$$
f(x)= \begin{cases}1 & \text { if } x>0 \\ -1 & \text { if } x \leq 0\end{cases}
$$

$\lim _{x \rightarrow 0}[f(x)]^{2}=1$ but $\lim _{x \rightarrow 0^{+}} f(x)=1 \neq-1=\lim _{x \rightarrow 0^{-}} f(x)$

