THE CHINESE UNIVERSITY OF HONG KONG **Department of Mathematics** MATH1010D&E (2016/17 Term 1) **University Mathematics Tutorial 3**

Definition (Convergence of infinite series)

Let $\sum_{n=1}^{\infty} a_n$ be a infinite series. Then it is convergent if the sequence of **partial sum**

$$s_n = \sum_{k=1}^n a_k$$

is convergent. Then we define

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n$$

Some theorems about infinite series

- 1. If $\sum_{n=1}^{\infty} a_n$ is convergent, then $\lim_{n \to \infty} a_n = 0$

2. Comparison test If $0 \le |a_n| \le b_n$ for all n and $\sum_{n=0}^{\infty} b_n$ is convergent, then $\sum_{n=0}^{\infty} a_n$ is convergent

3. Alternating series test

If $\{a_n\}$ is a decreasing sequence of positive real numbers and $\lim_{n\to\infty} a_n = 0$, then $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent.

Definition (Limit of functions)

Let f(x) be a real-valued function.

1. $L \in \mathbb{R}$ is said to be a limit of f(x) at x = a if for any $\epsilon > 0$, there exists δ such that

if
$$0 < |x - a| < \delta$$
 then $|f(x) - L| < \epsilon$

Here we write $\lim_{x \to a} f(x) = L$

2. $L \in \mathbb{R}$ is said to be a limit of f(x) at $x = +\infty$ if for any $\epsilon > 0$, there exists $R \in \mathbb{R}$ such that

if
$$x > R$$
 then $|f(x) - L| < \epsilon$

Here we write $\lim_{x \to \infty} f(x) = L$

Remark: f(a) may not exist even when $\lim_{x \to a} f(x)$ exists.

Problems that may be demonstrated in class :

Given that
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 is convergent, and $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

Q1. Are the following infinite series convergent? Prove it.

(a)
$$\sum_{n=1}^{\infty} \frac{|\cos n|}{n^4}$$

(b) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3n-2}}$
(d) $\sum_{n=1}^{\infty} \frac{4^n}{3^n+1}$
(e) $\sum_{n=2}^{\infty} \frac{n}{\ln n}$
(f) $\sum_{n=1}^{\infty} (-1)^n$

Q2. By using comparison test, prove the following statement: If $\sum_{n=1}^{\infty} a_n$ with $a_n > 0$ is

convergent, then $\sum_{n=1}^{\infty} a_n^2$ is convergent.

Q3. (a) If $\sum_{n=1}^{\infty} a_n$ is absolutely convergent and (b_n) is a bounded sequence, show that

 $\sum_{n=1}^{\infty} a_n b_n$ is absolutely convergent.

(b) Give an example such that the above statement is false if *absolutely convergent* is replaced by *convergent*.

Q4. Compute the following limits:

(a)
$$\lim_{x \to 1} x + 1$$

(b) $\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$
(c) $\lim_{x \to 0} \frac{e^x - 1}{x}$
(d) $\lim_{x \to \infty} \frac{6e^{4x} - e^{-2x}}{8e^{5x} - e^{2x} + 3e^{-x}}$
(e) $\lim_{x \to \infty} \frac{3x^2 + 7x + 5}{5x^2 + 2}$
(f) $\lim_{x \to \infty} x - \sqrt{x^2 + x}$
(g) $\lim_{x \to 0} x \sin \frac{1}{x}$

(h)
$$\lim_{x \to 1} \frac{x^5 - 1}{x - 1}$$

- Q5. (a) Let $a \in \mathbb{R}$. Show that if $\lim_{x \to a} f(x)$ exists, then $\lim_{x \to a} [f(x)]^2$ exist. (b) Is the converse true? Prove or disprove.