THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 3

Definition (Convergence of infinite series)

Let $\sum_{n=1}^{\infty} a_{n}$ be a infinite series. Then it is convergent if the sequence of partial sum

$$
s_{n}=\sum_{k=1}^{n} a_{k}
$$

is convergent. Then we define

$$
\sum_{n=1}^{\infty} a_{n}=\lim _{n \rightarrow \infty} s_{n}
$$

Some theorems about infinite series

1. If $\sum_{n=1}^{\infty} a_{n}$ is convergent, then $\lim _{n \rightarrow \infty} a_{n}=0$
2. Comparison test

If $0 \leq\left|a_{n}\right| \leq b_{n}$ for all n and $\sum_{n=0}^{\infty} b_{n}$ is convergent, then $\sum_{n=0}^{\infty} a_{n}$ is convergent
3. Alternating series test

If $\left\{a_{n}\right\}$ is a decreasing sequence of positive real numbers and $\lim _{n \rightarrow \infty} a_{n}=0$, then $\sum_{n=0}^{\infty}(-1)^{n} a_{n}$ is convergent.

Definition (Limit of functions)

Let $f(x)$ be a real-valued function.

1. $L \in \mathbb{R}$ is said to be a limit of $f(x)$ at $x=a$ if for any $\epsilon>0$, there exists δ such that

$$
\text { if } 0<|x-a|<\delta \text { then }|f(x)-L|<\epsilon
$$

Here we write $\lim _{x \rightarrow a} f(x)=L$
2. $L \in \mathbb{R}$ is said to be a limit of $f(x)$ at $x=+\infty$ if for any $\epsilon>0$, there exists $R \in \mathbb{R}$ such that

$$
\text { if } x>R \text { then }|f(x)-L|<\epsilon
$$

Here we write $\lim _{x \rightarrow \infty} f(x)=L$
Remark: $f(a)$ may not exist even when $\lim _{x \rightarrow a} f(x)$ exists.

Problems that may be demonstrated in class :

Given that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent, and $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.
Q1. Are the following infinite series convergent? Prove it.
(a) $\sum_{n=1}^{\infty} \frac{|\cos n|}{n^{4}}$
(b) $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{3 n-2}}$
(d) $\sum_{n=1}^{\infty} \frac{4^{n}}{3^{n}+1}$
(e) $\sum_{n=2}^{\infty} \frac{n}{\ln n}$
(f) $\sum_{n=1}^{\infty}(-1)^{n}$

Q2. By using comparison test, prove the following statement: If $\sum_{n=1}^{\infty} a_{n}$ with $a_{n}>0$ is convergent, then $\sum_{n=1}^{\infty} a_{n}^{2}$ is convergent.
Q3. (a) If $\sum_{n=1}^{\infty} a_{n}$ is absolutely convergent and $\left(b_{n}\right)$ is a bounded sequence, show that $\sum_{n=1}^{\infty} a_{n} b_{n}$ is absolutely convergent.
(b) Give an example such that the above statement is false if absolutely convergent is replaced by convergent.
Q4. Compute the following limits:
(a) $\lim _{x \rightarrow 1} x+1$
(b) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
(c) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$
(d) $\lim _{x \rightarrow \infty} \frac{6 e^{4 x}-e^{-2 x}}{8 e^{5 x}-e^{2 x}+3 e^{-x}}$
(e) $\lim _{x \rightarrow \infty} \frac{3 x^{2}+7 x+5}{5 x^{2}+2}$
(f) $\lim _{x \rightarrow \infty} x-\sqrt{x^{2}+x}$
(g) $\lim _{x \rightarrow 0} x \sin \frac{1}{x}$
(h) $\lim _{x \rightarrow 1} \frac{x^{5}-1}{x-1}$

Q5. (a) Let $a \in \mathbb{R}$. Show that if $\lim _{x \rightarrow a} f(x)$ exists, then $\lim _{x \rightarrow a}[f(x)]^{2}$ exist.
(b) Is the converse true? Prove or disprove.

