THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010D&E (2016/17 Term 1) University Mathematics Tutorial 2

Definition An infinite sequence $\{a_n\}$ of real numbers is said to

- converge if there exists real number L s.t. for any $\varepsilon > 0$, there exists $N \in \mathbb{N}$ s.t. for any n > N, $|a_n L| < \varepsilon$. In this cases, we write $\lim_{n \to \infty} a_n = L$.
- *diverge* if it does not converge.
- tend to $+\infty$ $(-\infty)$ if for any real number M, there exists $N \in \mathbb{N}$ s.t. for any n > N, $a_n > M$ $(a_n < M)$. In this case, we write $\lim_{n\to\infty} a_n = +\infty$ $(\lim_{n\to\infty} a_n = -\infty)$.
- be monotonic increasing (decreasing) if for any m < n, $a_m \le a_n$ $(a_m \ge a_n)$.
- be strictly increasing (decreasing) if for any m < n, $a_m < a_n$ $(a_m > a_n)$.
- be bounded above (below) if there exists real number M s.t. for any $n \in \mathbb{N}$, $a_n \leq M$ $(a_n \geq M)$.
- be bounded if there exists real number M s.t. for any $n \in \mathbb{N}$, $|a_n| \leq M$.
- **Theorems** From now onwards, by a sequence we mean an infinite sequence of real numbers. Let $\{a_n\}, \{b_n\}, \{c_n\}$ be sequences.
 - If $\{a_n\}$ converges, then it is bounded.
 - If $\{a_n\}$ is monotonic increasing and bounded above, then it converges.
 - If $\{a_n\}$ is monotonic increasing and not bounded above, then it tends to $+\infty$.
 - If $\{a_n\}$ is monotonic decreasing and bounded below, then it converges.
 - If $\{a_n\}$ is monotonic decreasing and not bounded below, then it tends to $-\infty$.
 - If $\{a_n\}$ and $\{b_n\}$ converge with $\lim_{n\to\infty} a_n = a$ and $\lim_{n\to\infty} b_n = b$, then the sequences $\{a_n + b_n\}$, $\{a_n b_n\}$ and $\{|a_n|\}$ converge and

$$\lim_{n \to \infty} (a_n + b_n) = a + b, \quad \lim_{n \to \infty} a_n b_n = ab \quad \text{and} \quad \lim_{n \to \infty} |a_n| = |a|.$$

• If $\{a_n\}$ converges with $\lim_{n\to\infty} a_n = a \neq 0$, then $\{1/a_n\}$ converges and

$$\lim_{n \to \infty} 1/a_n = 1/a.$$

- If $\{|a_n|\}$ converges with $\lim_{n\to\infty} |a_n| = 0$, then $\{a_n\}$ converges and $\lim_{n\to\infty} a_n = 0$.
- If $\lim_{n\to\infty} |a_n| = +\infty$, then $\{1/a_n\}$ converges and $\lim_{n\to\infty} \frac{1}{a_n} = 0$.
- (Sandwich Theorem) if $a_n \leq b_n \leq c_n$ for any $n \in \mathbb{N}$ and $\{a_n\}$ and $\{c_n\}$ converge with $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then $\{b_n\}$ converges and $\lim_{n\to\infty} b_n = L$.
- If $a_n \leq b_n$ for any $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = +\infty$, then $\lim_{n \to \infty} b_n = +\infty$.
- If $a_n \ge b_n$ for any $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = -\infty$, then $\lim_{n \to \infty} b_n = -\infty$.
- If $\{a_n\}$ converges with $\lim_{n\to\infty} a_n = 0$ and $\{b_n\}$ is bounded, then $\{a_nb_n\}$ converges and $\lim_{n\to\infty} a_nb_n = 0$.

- If $\lim_{n\to\infty} a_n = L$ (*L* can be any real number, $+\infty$ or $-\infty$), then for any subsequence $\{a_{n_k}\}$ of $\{a_n\}$, $\lim_{k\to\infty} a_{n_k} = L$.
- If $\lim_{n\to\infty} a_{2n-1} = \lim_{n\to\infty} a_{2n} = L$ (*L* can be any real number, $+\infty$ or $-\infty$), then $\lim_{n\to\infty} a_n = L$.
- Suppose $a \ge 0$. Then

$$\lim_{n \to \infty} a^n = \begin{cases} +\infty, & \text{if } a > 1; \\ 1, & \text{if } a = 1; \\ 0, & \text{if } 0 \le a < 1. \end{cases}$$

• Let P(x) and Q(x) be polynomial functions with leading coefficients a and b respectively. Suppose $Q(x) \neq 0$. Then

$$\lim_{n \to \infty} \frac{P(n)}{Q(n)} = \begin{cases} +\infty, & \text{if } \deg P > \deg Q \text{ and } ab > 0; \\ -\infty, & \text{if } \deg P > \deg Q \text{ and } ab < 0; \\ \frac{a}{b}, & \text{if } \deg P = \deg Q; \\ 0, & \text{if } \deg P < \deg Q. \end{cases}$$

Problems that may be demonstrated in class :

Assume we know the fact: $2 < e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$, $\lim_{n \to \infty} \sin \frac{1}{n} = 0$.

Q1. State whether the following sequence converges. Find the limit if it exists.

(a)
$$\frac{37(-n)^{2017}-(-n)^{689}}{141(-n)^{2017}+928(-n)^{64}}$$
; (b) $\sqrt[3]{2n^3+1} - \sqrt[3]{2n^3-n^2}$; (c) $(-1/2)^n$;
(d) $(1-\frac{1}{n+1})^n$; (e) $\sin\frac{n^2}{n+2} - \sin\frac{n^3-n-2}{n^2+2n}$; (f) $\frac{n^2}{\ln(n+1)}$;
(g) $\cos\frac{1}{n}$; (h) $\tan\frac{1}{n}$.

- Q2. Let $\{a_n\}$ be a harmonic sequence, i.e. a sequence such that $a_n \neq 0$ for any $n \in \mathbb{N}$ and $1/a_n$ is an arithmetic sequence. Prove that $\{a_n\}$ converges.
- Q3. Let $\{a_n\}$ be a sequence such that $a_n > 0$ for any $n \in \mathbb{N}$ and $\lim_{n \to \infty} a_n = a > 0$. Use Sandwich Theorem to show that $\{\sqrt{a_n}\}$ converges and $\lim_{n\to\infty} \sqrt{a_n} = \sqrt{a}$.
- Q4. Suppose $\{a_n\}$ is a sequence such that $a_1 \neq 0$ and $a_{n+1} = 2^{-1}(a_n + a_n^{-1})$ for any $n \in \mathbb{N}$. Does $\{a_n\}$ converge? If it does, find its limit.
- Q5. Suppose for any $m \in \mathbb{N}$, we have a function $f_m(x) = x^2 mx 1, x \in \mathbb{R}$ and a sequence $\{a_{m,n}\}$ satisfying the recursive relation:

$$a_{m,n+1} = m + \frac{1}{a_{m,n}}$$
 for any $n \in \mathbb{N}$, $a_{m,1} > 0$.

(a) Fix $m \in \mathbb{N}$. Show that for any $n \in \mathbb{N}$, $a_{m,n} > 0$ and

$$f_m(a_{m,n+1}) = -\frac{f_m(a_{m,n})}{a_{m,n}^2} = \frac{a_{m,n+1} - a_{m,n}}{a_{m,n}}.$$

- (b) Fix $m \in \mathbb{N}$. Show that $\{a_{m,2n-1}\}$ is monotonic decreasing and bounded below if $f_m(a_{m,1}) \ge 0$ and $\{a_{m,2n-1}\}$ is a monotonic increasing and bounded above if $f_m(a_{m,1}) < 0$.
- (c) Fix $m \in \mathbb{N}$. Show that $\{a_{m,n}\}$ converges and find its limit a_m in terms of m.
- (d) Evaluate $\lim_{m\to\infty} a_m$ and $\lim_{m\to\infty} (a_{m+1} a_m)$.