THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH1010D\&E (2016/17 Term 1)
 University Mathematics
 Tutorial 2

Definition An infinite sequence $\left\{a_{n}\right\}$ of real numbers is said to

- converge if there exists real number L s.t. for any $\varepsilon>0$, there exists $N \in \mathbb{N}$ s.t. for any $n>N,\left|a_{n}-L\right|<\varepsilon$. In this cases, we write $\lim _{n \rightarrow \infty} a_{n}=L$.
- diverge if it does not converge.
- tend to $+\infty(-\infty)$ if for any real number M, there exists $N \in \mathbb{N}$ s.t. for any $n>N$, $a_{n}>M\left(a_{n}<M\right)$. In this case, we write $\lim _{n \rightarrow \infty} a_{n}=+\infty\left(\lim _{n \rightarrow \infty} a_{n}=-\infty\right)$.
- be monotonic increasing (decreasing) if for any $m<n, a_{m} \leq a_{n}\left(a_{m} \geq a_{n}\right)$.
- be strictly increasing (decreasing) if for any $m<n, a_{m}<a_{n}\left(a_{m}>a_{n}\right)$.
- be bounded above (below) if there exists real number M s.t. for any $n \in \mathbb{N}, a_{n} \leq M$ $\left(a_{n} \geq M\right)$.
- be bounded if there exists real number M s.t. for any $n \in \mathbb{N},\left|a_{n}\right| \leq M$.

Theorems From now onwards, by a sequence we mean an infinite sequence of real numbers. Let $\left\{a_{n}\right\},\left\{b_{n}\right\},\left\{c_{n}\right\}$ be sequences.

- If $\left\{a_{n}\right\}$ converges, then it is bounded.
- If $\left\{a_{n}\right\}$ is monotonic increasing and bounded above, then it converges.
- If $\left\{a_{n}\right\}$ is monotonic increasing and not bounded above, then it tends to $+\infty$.
- If $\left\{a_{n}\right\}$ is monotonic decreasing and bounded below, then it converges.
- If $\left\{a_{n}\right\}$ is monotonic decreasing and not bounded below, then it tends to $-\infty$.
- If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ converge with $\lim _{n \rightarrow \infty} a_{n}=a$ and $\lim _{n \rightarrow \infty} b_{n}=b$, then the sequences $\left\{a_{n}+b_{n}\right\},\left\{a_{n} b_{n}\right\}$ and $\left\{\left|a_{n}\right|\right\}$ converge and

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=a+b, \quad \lim _{n \rightarrow \infty} a_{n} b_{n}=a b \quad \text { and } \quad \lim _{n \rightarrow \infty}\left|a_{n}\right|=|a| .
$$

- If $\left\{a_{n}\right\}$ converges with $\lim _{n \rightarrow \infty} a_{n}=a \neq 0$, then $\left\{1 / a_{n}\right\}$ converges and

$$
\lim _{n \rightarrow \infty} 1 / a_{n}=1 / a .
$$

- If $\left\{\left|a_{n}\right|\right\}$ converges with $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$, then $\left\{a_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} a_{n}=0$.
- If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=+\infty$, then $\left\{1 / a_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} \frac{1}{a_{n}}=0$.
- (Sandwich Theorem) if $a_{n} \leq b_{n} \leq c_{n}$ for any $n \in \mathbb{N}$ and $\left\{a_{n}\right\}$ and $\left\{c_{n}\right\}$ converge with $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$, then $\left\{b_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} b_{n}=L$.
- If $a_{n} \leq b_{n}$ for any $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=+\infty$, then $\lim _{n \rightarrow \infty} b_{n}=+\infty$.
- If $a_{n} \geq b_{n}$ for any $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=-\infty$, then $\lim _{n \rightarrow \infty} b_{n}=-\infty$.
- If $\left\{a_{n}\right\}$ converges with $\lim _{n \rightarrow \infty} a_{n}=0$ and $\left\{b_{n}\right\}$ is bounded, then $\left\{a_{n} b_{n}\right\}$ converges and $\lim _{n \rightarrow \infty} a_{n} b_{n}=0$.
- If $\lim _{n \rightarrow \infty} a_{n}=L$ (L can be any real number, $+\infty$ or $-\infty$), then for any subsequence $\left\{a_{n_{k}}\right\}$ of $\left\{a_{n}\right\}, \lim _{k \rightarrow \infty} a_{n_{k}}=L$.
- If $\lim _{n \rightarrow \infty} a_{2 n-1}=\lim _{n \rightarrow \infty} a_{2 n}=L$ (L can be any real number, $+\infty$ or $\left.-\infty\right)$, then $\lim _{n \rightarrow \infty} a_{n}=L$.
- Suppose $a \geq 0$. Then

$$
\lim _{n \rightarrow \infty} a^{n}= \begin{cases}+\infty, & \text { if } a>1 \\ 1, & \text { if } a=1 \\ 0, & \text { if } 0 \leq a<1\end{cases}
$$

- Let $P(x)$ and $Q(x)$ be polynomial functions with leading coefficients a and b respectively. Suppose $Q(x) \not \equiv 0$. Then

$$
\lim _{n \rightarrow \infty} \frac{P(n)}{Q(n)}= \begin{cases}+\infty, & \text { if } \operatorname{deg} P>\operatorname{deg} Q \text { and } a b>0 \\ -\infty, & \text { if } \operatorname{deg} P>\operatorname{deg} Q \text { and } a b<0 \\ \frac{a}{b}, & \text { if } \operatorname{deg} P=\operatorname{deg} Q \\ 0, & \text { if } \operatorname{deg} P<\operatorname{deg} Q\end{cases}
$$

Problems that may be demonstrated in class :
Assume we know the fact: $2<e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}, \lim _{n \rightarrow \infty} \sin \frac{1}{n}=0$.
Q1. State whether the following sequence converges. Find the limit if it exists.
(a) $\frac{37(-n)^{2017}-(-n)^{689}}{141(-n)^{2017}+928(-n)^{64}}$;
(b) $\sqrt[3]{2 n^{3}+1}-\sqrt[3]{2 n^{3}-n^{2}}$;
(c) $(-1 / 2)^{n}$;
(d) $\left(1-\frac{1}{n+1}\right)^{n}$;
(e) $\sin \frac{n^{2}}{n+2}-\sin \frac{n^{3}-n-2}{n^{2}+2 n}$;
(f) $\frac{n^{2}}{\ln (n+1)}$;
(g) $\cos \frac{1}{n}$;
(h) $\tan \frac{1}{n}$.

Q2. Let $\left\{a_{n}\right\}$ be a harmonic sequence, i.e. a sequence such that $a_{n} \neq 0$ for any $n \in \mathbb{N}$ and $1 / a_{n}$ is an arithmetic sequence. Prove that $\left\{a_{n}\right\}$ converges.
Q3. Let $\left\{a_{n}\right\}$ be a sequence such that $a_{n}>0$ for any $n \in \mathbb{N}$ and $\lim _{n \rightarrow \infty} a_{n}=a>0$. Use Sandwich Theorem to show that $\left\{\sqrt{a_{n}}\right\}$ converges and $\lim _{n \rightarrow \infty} \sqrt{a_{n}}=\sqrt{a}$.
Q4. Suppose $\left\{a_{n}\right\}$ is a sequence such that $a_{1} \neq 0$ and $a_{n+1}=2^{-1}\left(a_{n}+a_{n}^{-1}\right)$ for any $n \in \mathbb{N}$. Does $\left\{a_{n}\right\}$ converge? If it does, find its limit.
Q5. Suppose for any $m \in \mathbb{N}$, we have a function $f_{m}(x)=x^{2}-m x-1, x \in \mathbb{R}$ and a sequence $\left\{a_{m, n}\right\}$ satisfying the recursive relation:

$$
a_{m, n+1}=m+\frac{1}{a_{m, n}} \quad \text { for any } n \in \mathbb{N}, \quad a_{m, 1}>0
$$

(a) Fix $m \in \mathbb{N}$. Show that for any $n \in \mathbb{N}, a_{m, n}>0$ and

$$
f_{m}\left(a_{m, n+1}\right)=-\frac{f_{m}\left(a_{m, n}\right)}{a_{m, n}^{2}}=\frac{a_{m, n+1}-a_{m, n}}{a_{m, n}} .
$$

(b) Fix $m \in \mathbb{N}$. Show that $\left\{a_{m, 2 n-1}\right\}$ is monotonic decreasing and bounded below if $f_{m}\left(a_{m, 1}\right) \geq 0$ and $\left\{a_{m, 2 n-1}\right\}$ is a monotonic increasing and bounded above if $f_{m}\left(a_{m, 1}\right)<0$.
(c) Fix $m \in \mathbb{N}$. Show that $\left\{a_{m, n}\right\}$ converges and find its limit a_{m} in terms of m.
(d) Evaluate $\lim _{m \rightarrow \infty} a_{m}$ and $\lim _{m \rightarrow \infty}\left(a_{m+1}-a_{m}\right)$.

