(1) Differentiation

- Differentiability of functions
- Rules of differentiation
- Second and higher derivatives
(2) Mean Value Theorem and Taylor's Theorem
- Mean value theorem
- L'Hopital's rule
- Taylor's theorem

Definition (Differentiability)

Let $f(x)$ be a function. Denote

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

and we say that $f(x)$ is differentiable at $x=a$ if the above limit exists. We say that $f(x)$ is differentiable on (a, b) if $f(x)$ is differentiable at every point in (a, b).

The above limit can also be written as

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Theorem

If $f(x)$ differentiable at $x=a$, then $f(x)$ is continuous at $x=a$.
Differentiable at $x=a \Rightarrow$ Continuous at $x=a$

Proof.

Suppose $f(x)$ is differentiable at $x=a$. Then

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x)-f(a)) & =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}\right)(x-a) \\
& =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a}\right) \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0=0
\end{aligned}
$$

Therefore $f(x)$ is continuous at $x=a$.

Note that the converse of the above theorem does not hold. The function $f(x)=|x|$ is continuous but not differentiable at 0 .

Example

(1) $f(x)=e^{x}: f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{e^{h}-e^{0}}{h}=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=1$.
(2) $f(x)=\ln x: f^{\prime}(1)=\lim _{h \rightarrow 0} \frac{\ln (1+h)-\ln 1}{h}=\lim _{h \rightarrow 0} \frac{\ln (1+h)}{h}=1$.
(3) $f(x)=\sin x: f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{\sin h-\sin 0}{h}=\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$.

Example

Find the values of a, b if $f(x)=\left\{\begin{array}{ll}4 x-1, & \text { if } x \leq 1 \\ a x^{2}+b x, & \text { if } x>1\end{array}\right.$ is differentiable at $x=1$.

Solution

Since $f(x)$ is differentiable at $x=1, f(x)$ is continuous at $x=1$ and we have

$$
\lim _{x \rightarrow 1^{+}} f(x)=f(1) \Rightarrow \lim _{x \rightarrow 1^{+}}\left(a x^{2}+b x\right)=a+b=3
$$

Moreover, $f(x)$ is differentiable at $x=1$ and we have

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{(4(1+h)-1)-3}{h}=4 \\
\lim _{h \rightarrow 0^{+}} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{a(1+h)^{2}-b(1+h)-3}{h}=2 a+b
\end{aligned}
$$

Therefore $\left\{\begin{array}{l}a+b=3 \\ 2 a+b=4\end{array} \Rightarrow\left\{\begin{array}{l}a=1 \\ b=2\end{array}\right.\right.$.

Definition (First derivative)

Let $y=f(x)$ be a differentiable function on (a, b). The first derivative of $f(x)$ is the function on (a, b) defined by

$$
\frac{d y}{d x}=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Theorem

Let $f(x)$ and $g(x)$ be differentiable functions and c be a real number. Then
(1) $(f+g)^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
(2) $(c f)^{\prime}(x)=c f^{\prime}(x)$

Theorem

(1) $\frac{d}{d x} x^{n}=n x^{n-1}, n \in \mathbb{Z}^{+}$, for $x \in \mathbb{R}$
(2) $\frac{d}{d x} e^{x}=e^{x}$ for $x \in \mathbb{R}$
(3) $\frac{d}{d x} \ln x=\frac{1}{x}$ for $x>0$
(1) $\frac{d}{d x} \cos x=-\sin x$ for $x \in \mathbb{R}$
(3) $\frac{d}{d x} \sin x=\cos x$ for $x \in \mathbb{R}$

$$
\operatorname{Proof}\left(\frac{d}{d x} x^{n}=n x^{n-1}\right)
$$

Let $y=x^{n}$. For any $x \in \mathbb{R}$, we have

$$
\begin{aligned}
\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h} \\
& =\lim _{h \rightarrow 0} \frac{(x+h-x)\left((x+h)^{n-1}+(x+h)^{n-2} x+\cdots+x^{n-1}\right)}{h} \\
& =\lim _{h \rightarrow 0}\left((x+h)^{n-1}+(x+h)^{n-2} x+\cdots+x^{n-1}\right) \\
& =n x^{n-1}
\end{aligned}
$$

Note that the above proof is valid only when $n \in \mathbb{Z}^{+}$is a positive integer.

Proof $\left(\frac{d}{d x} e^{x}=e^{x}\right)$

Let $y=e^{x}$. For any $x \in \mathbb{R}$, we have

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=e^{x}
$$

(Alternative proof)

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{d}{d x}\left(1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots\right) \\
& =0+1+\frac{2 x}{2!}+\frac{3 x^{2}}{3!}+\frac{4 x^{3}}{4!}+\cdots \\
& =1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
& =e^{x}
\end{aligned}
$$

In general, differentiation cannot be applied term by term to infinite series. The second proof is valid only after we prove that this can be done to power series.

Proof

$\left(\frac{d}{d x} \ln x=\frac{1}{x}\right)$ Let $f(x)=\ln x$. For any $x>0$, we have

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\ln (x+h)-\ln x}{h}=\lim _{h \rightarrow 0} \frac{\ln \left(1+\frac{h}{x}\right)}{h}=\frac{1}{x}
$$

$\left(\frac{d}{d x} \cos x=-\sin x\right)$ Let $f(x)=\cos x$. For any $x \in \mathbb{R}$, we have

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}=\lim _{h \rightarrow 0} \frac{-2 \sin \left(x+\frac{h}{2}\right) \sin \left(\frac{h}{2}\right)}{h}=-\sin x
$$

$\left(\frac{d}{d x} \sin x=\cos x\right)$ Let $f(x)=\sin x$. For any $x \in \mathbb{R}$, we have

$$
\frac{d y}{d x}=\lim _{h \rightarrow 0} \frac{\sin (x+h)-\sin x}{h}=\lim _{h \rightarrow 0} \frac{2 \cos \left(x+\frac{h}{2}\right) \sin \left(\frac{h}{2}\right)}{h}=\cos x
$$

Definition

Let $a>0$ be a positive real number. For $x \in \mathbb{R}$, we define

$$
a^{x}=e^{x \ln a} .
$$

Theorem

Let $a>0$ be a positive real number. We have
(1) $a^{x+y}=a^{x} a^{y}$ for any $x, y \in \mathbb{R}$
(2) $\frac{d}{d x} a^{x}=a^{x} \ln a$.

Proof.

(1) $a^{x+y}=e^{(x+y) \ln a}=e^{x \ln a} e^{y \ln a}=a^{x} a^{y}$
(2) $\frac{d}{d x} a^{x}=\frac{d}{d x} e^{x \ln a}=e^{x \ln a} \ln a=a^{x} \ln a$

Example

Let $f(x)=|x|$ for $x \in \mathbb{R}$. Show that $f(x)$ is not differentiable at $x=0$.

Proof.

Observe that

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{-h}{h}=-1 \\
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{h}{h}=1
\end{aligned}
$$

Thus the limit

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}
$$

does not exist. Therefore $f(x)$ is not differentiable at $x=0$.

Figure: $f(x)=|x|$

Example

Let $f(x)=|x| x$ for $x \in \mathbb{R}$. Find $f^{\prime}(x)$.

Solution

When $x<0, f(x)=-x^{2}$ and $f^{\prime}(x)=-2 x$. When $x>0, f(x)=x^{2}$ and $f^{\prime}(x)=2 x$. When $x=0$, we have

$$
\begin{aligned}
\lim _{h \rightarrow 0^{-}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0^{-}} \frac{-h^{2}-0}{h}=0 \\
\lim _{h \rightarrow 0^{+}} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0^{+}} \frac{h^{2}-0}{h}=0
\end{aligned}
$$

Thus $f^{\prime}(0)=0$. Therefore

$$
\begin{aligned}
f^{\prime}(x) & = \begin{cases}-2 x, & \text { if } x<0 \\
0, & \text { if } x=0 \\
2 x, & \text { if } x>0\end{cases} \\
& =2|x| .
\end{aligned}
$$

Note that $f^{\prime}(x)=2|x|$ is continuous at $x=0$.

Figure: $f(x)=|x| x$

Example

Let

$$
f(x)= \begin{cases}x \sin \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

(1) Find $f^{\prime}(x)$ for $x \neq 0$.
(2) Determine whether $f(x)$ is differentiable at $x=0$.

Solution

1. When $x \neq 0$,

$$
f^{\prime}(x)=\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x} .
$$

2. We have

$$
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h \sin \frac{1}{h}}{h}=\lim _{h \rightarrow 0} \sin \frac{1}{h}
$$

does not exist. Therefore $f(x)$ is not differentiable at $x=0$.

Figure: $f(x)=x \sin \left(\frac{1}{x}\right)$

Example

Let

$$
f(x)=\left\{\begin{array}{ll}
x^{2} \sin \frac{1}{x}, & \text { if } x \neq 0 \\
0, & \text { if } x=0
\end{array} .\right.
$$

(1) Find $f^{\prime}(x)$.
(2) Determine whether $f^{\prime}(x)$ is continuous at $x=0$.

Solution

1. When $x \neq 0$, we have

$$
f^{\prime}(x)=2 x \sin \frac{1}{x}+x^{2}\left(-\frac{1}{x^{2}} \cos \frac{1}{x}\right)=2 x \sin \frac{1}{x}-\cos \frac{1}{x} .
$$

Solution

2. When $x=0$, we have

$$
f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0} \frac{h^{2} \sin \frac{1}{h}}{h}=\lim _{h \rightarrow 0} h \sin \frac{1}{h}
$$

Since $\lim _{h \rightarrow 0} h=0$ and $\left|\sin \frac{1}{h}\right| \leq 1$ is bounded, we have $f^{\prime}(0)=0$. Therefore

$$
f^{\prime}(x)= \begin{cases}2 x \sin \frac{1}{x}-\cos \frac{1}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Observe that

$$
\lim _{x \rightarrow 0} f^{\prime}(x)=\lim _{x \rightarrow 0}\left(2 x \sin \frac{1}{x}-\cos \frac{1}{x}\right)
$$

does not exist. We conclude that $f^{\prime}(x)$ is not continuous at $x=0$.

Figure: $f(x)=x^{2} \sin \left(\frac{1}{x}\right)$

Example

$f(x)$	$f(x)$ is continuous at $x=0$	$f(x)$ is differentiable at $x=0$	$f^{\prime}(x)$ is continuous at $x=0$
$\|x\|$	Yes	No	Not applicable
$\|x\| x$	Yes	Yes	Yes
$x \sin \left(\frac{1}{x}\right) ; f(0)=0$	Yes	No	Not applicable
$x^{2} \sin \left(\frac{1}{x}\right) ; f(0)=0$	Yes	Yes	No

Example

The following diagram shows the relations between the existence of limit, continuity and differentiability of a function at a point a. (Examples in the bracket is for $a=0$.)

$$
\text { Second differentiable } \quad\left(f(x)=\frac{\sin x}{x} ; f(0)=1\right)
$$ \Downarrow

Continuously differentiable

$$
(f(x)=|x| x)
$$

Differentiable \Downarrow
Continuous
\Downarrow
Limit exists
\Downarrow
Limit exists from both sides

$$
\left(f(x)=x^{2} \sin \left(x^{-1}\right) ; f(0)=0\right)
$$

$$
(f(x)=|x|)
$$

$$
\left(f(x)=\frac{\sin x}{x} ; f(0)=0\right)
$$

$$
\left(f(x)=\frac{x}{|x|} ; f(0)=0\right)
$$

Theorem (Basic formulas for differentiation)

$$
\begin{array}{ll}
\frac{d}{d x} x^{n}=n x^{n-1} & \\
\frac{d}{d x} e^{x}=e^{x} & \frac{d}{d x} \ln x=\frac{1}{x} \\
\frac{d}{d x} \sin x=\cos x & \frac{d}{d x} \cos x=-\sin x \\
\frac{d}{d x} \tan x=\sec ^{2} x & \frac{d}{d x} \cot x=-\csc ^{2} x \\
\frac{d}{d x} \sec x=\sec x \tan x & \frac{d}{d x} \csc x=-\csc x \cot x \\
\frac{d}{d x} \cosh x=\sinh x & \frac{d}{d x} \sinh x=\cosh x
\end{array}
$$

Theorem（Product rule and quotient rule）

Let u and v be differentiable functions of x ．Then

$$
\begin{aligned}
\frac{d}{d x} u v & =u \frac{d v}{d x}+v \frac{d u}{d x} \\
\frac{d}{d x} \frac{u}{v} & =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
\end{aligned}
$$

Proof

Let $u=f(x)$ and $v=g(x)$ ．

$$
\begin{aligned}
\frac{d}{d x} u v & =\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x+h)-f(x+h) g(x)}{h}+\frac{f(x+h) g(x)-f(x) g(x)}{h}\right) \\
& =\lim _{h \rightarrow 0}\left(f(x+h) \cdot \frac{g(x+h)-g(x)}{h}+g(x) \cdot \frac{f(x+h)-f(x)}{h}\right) \\
& =u \frac{d v}{d x}+v \frac{d u}{d x}
\end{aligned}
$$

Proof.

$$
\begin{aligned}
\frac{d}{d x} \frac{u}{v} & =\lim _{h \rightarrow 0} \frac{\frac{f(x+h)}{g(x+h)}-\frac{f(x)}{g(x)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h) g(x)-f(x) g(x+h)}{h g(x) g(x+h)} \\
& =\lim _{h \rightarrow 0}\left(\frac{f(x+h) g(x)-f(x) g(x)}{h g(x) g(x+h)}-\frac{f(x) g(x+h)-f(x) g(x)}{h g(x) g(x+h)}\right) \\
& =\lim _{h \rightarrow 0}\left(g(x) \cdot \frac{f(x+h)-f(x)}{h g(x) g(x+h)}-f(x) \cdot \frac{g(x+h)-g(x)}{h g(x) g(x+h)}\right) \\
& =\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
\end{aligned}
$$

Theorem (Chain rule)

Let $y=f(u)$ be a function of u and $u=g(x)$ be a function of x. Suppose $g(x)$ is differentiable at $x=a$ and $f(u)$ is differentiation at $u=g(a)$. Then $f \circ g(x)=f(g(x))$ is differentiable at $x=a$ and

$$
(f \circ g)^{\prime}(a)=f^{\prime}(g(a)) g^{\prime}(a) .
$$

In other words,

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

Proof

$$
\begin{aligned}
(f \circ g)^{\prime}(a) & =\lim _{h \rightarrow 0} \frac{f(g(a+h))-f(g(a))}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(g(a+h))-f(g(a))}{g(a+h)-g(a)} \lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h} \\
& =\lim _{k \rightarrow 0} \frac{f(g(a)+k)-f(g(a))}{k} \lim _{h \rightarrow 0} \frac{g(a+h)-g(a)}{h} \\
& =f^{\prime}(g(a)) g^{\prime}(a)
\end{aligned}
$$

The above proof is valid only if $g(a+h)-g(a) \neq 0$ whenever h is sufficiently close to 0 . This is true when $g^{\prime}(a) \neq 0$ because of the following proposition.

Proposition

Suppose $g(x)$ is a function such that $g^{\prime}(a) \neq 0$. Then there exists $\delta>0$ such that if $0<|h|<\delta$, then

$$
g(a+h)-g(a) \neq 0
$$

When $g^{\prime}(a)=0$, we need another proposition.

Proposition

Suppose $f(u)$ is a function which is differentiable at $u=b$. Then there exists $\delta>0$ and $M>0$ such that

$$
|f(b+h)-f(b)|<M|h| \text { for any }|h|<\delta
$$

The proof of chain rule when $g^{\prime}(a)=0$ goes as follows. There exists $\delta>0$ such that

$$
|f(g(a+h))-f(g(a))|<M|g(a+h)-g(a)| \text { for any }|h|<\delta
$$

Therefore

$$
\lim _{h \rightarrow 0}\left|\frac{f(g(a+h))-f(g(a))}{h}\right| \leq \lim _{h \rightarrow 0} M\left|\frac{g(a+h)-g(a)}{h}\right|=0
$$

which implies $(f \circ g)^{\prime}(a)=0$.

Example

The chain rule is used in the following way. Suppose u is a differentiable function of x. Then

$$
\begin{aligned}
\frac{d}{d x} u^{n} & =n u^{n-1} \frac{d u}{d x} \\
\frac{d}{d x} e^{u} & =e^{u} \frac{d u}{d x} \\
\frac{d}{d x} \ln u & =\frac{1}{u} \frac{d u}{d x} \\
\frac{d}{d x} \cos u & =-\sin u \frac{d u}{d x} \\
\frac{d}{d x} \sin u & =\cos u \frac{d u}{d x}
\end{aligned}
$$

Example

1. $\frac{d}{d x} \sin ^{3} x=3 \sin ^{2} x \frac{d}{d x} \sin x=3 \sin ^{2} x \cos x$
2. $\frac{d}{d x} e^{\sqrt{x}} \quad=e^{\sqrt{x}} \frac{d}{d x} \sqrt{x}=\frac{e^{\sqrt{x}}}{2 \sqrt{x}}$
3. $\frac{d}{d x} \frac{1}{(\ln x)^{2}}=-\frac{2}{(\ln x)^{3}} \frac{d}{d x} \ln x=-\frac{2}{x(\ln x)^{3}}$
4. $\frac{d}{d x} \ln \cos 2 x=\frac{1}{\cos 2 x}(-\sin 2 x) \cdot 2=-\frac{2 \sin 2 x}{\cos 2 x}=-2 \tan 2 x$
5. $\frac{d}{d x} \tan \sqrt{1+x^{2}}=\sec ^{2} \sqrt{1+x^{2}} \cdot \frac{1}{2 \sqrt{1+x^{2}}} \cdot 2 x=\frac{x \sec ^{2} \sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}$
6. $\frac{d}{d x} \sec ^{3} \sqrt{\sin x}=3 \sec ^{2} \sqrt{\sin x}(\sec \sqrt{\sin x} \tan \sqrt{\sin x}) \frac{1}{2 \sqrt{\sin x}} \cdot \cos x$
$=\frac{3 \sec ^{3} \sqrt{\sin x} \tan \sqrt{\sin x} \cos x}{2 \sqrt{\sin x}}$

Example

7. $\frac{d}{d x} \cos ^{4} x \sin x=\cos ^{4} x \cos x+4 \cos ^{3} x(-\sin x) \sin x$

$$
\begin{aligned}
& =\cos ^{5} x-4 \cos ^{3} x \sin ^{2} x \\
& =\frac{\ln x(2 \sec 2 x \tan 2 x)-\sec 2 x\left(\frac{1}{x}\right)}{(\ln x)^{2}}
\end{aligned}
$$

8. $\frac{d}{d x} \frac{\sec 2 x}{\ln x}$

$$
=\frac{\sec 2 x(2 x \tan 2 x \ln x-1)}{x(\ln x)^{2}}
$$

9. $e^{\frac{\tan x}{x}}$

$$
=e^{\frac{\tan x}{x}}\left(\frac{x \sec ^{2} x-\tan x}{x^{2}}\right)
$$

10. $\sin \left(\frac{\ln x}{\sqrt{1+x^{2}}}\right)=\cos \left(\frac{\ln x}{\sqrt{1+x^{2}}}\right)\left(\frac{\sqrt{1+x^{2}}\left(\frac{1}{x}\right)-\ln x\left(\frac{2 x}{2 \sqrt{1+x^{2}}}\right)}{1+x^{2}}\right)$

$$
=\left(\frac{1+x^{2}-x^{2} \ln x}{x\left(1+x^{2}\right)^{\frac{3}{2}}}\right) \cos \left(\frac{\ln x}{\sqrt{1+x^{2}}}\right)
$$

Definition (Implicit functions)

An implicit function is an equation of the form $F(x, y)=0$. An implicit function may not define a function. Sometimes it defines a function when the domain and range are specified.

Theorem

Let $F(x, y)=0$ be an implicit function. Then

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial y} \frac{d y}{d x}=0
$$

and we have

$$
\frac{d y}{d x}=-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} .
$$

Here $\frac{\partial F}{\partial x}$ is called the partial derivative of F with respect to x which is the derivative of F with respect to x while considering y as constant. Similarly the partial derivative $\frac{\partial F}{\partial y}$ is the derivative of F with respect to y while considering x as constant.

Example

Find $\frac{d y}{d x}$ for the following implicit functions.
(1) $x^{2}-x y-x y^{2}=0$
(2) $\cos \left(x e^{y}\right)+x^{2} \tan y=1$

Solution

1. $2 x-\left(y+x y^{\prime}\right)-\left(y^{2}+2 x y y^{\prime}\right)=0$

$$
\begin{aligned}
x y^{\prime}+2 x y y^{\prime} & =2 x-y-y^{2} \\
y^{\prime} & =\frac{2 x-y-y^{2}}{x+2 x y}
\end{aligned}
$$

2. $-\sin \left(x e^{y}\right)\left(e^{y}+x e^{y} y^{\prime}\right)+2 x \tan y+x^{2} \sec ^{2} y y^{\prime}=0$

$$
\begin{aligned}
x^{2} \sec ^{2} y y^{\prime}-x e^{y} \sin \left(x e^{y}\right) y^{\prime} & =e^{y} \sin \left(x e^{y}\right)-2 x \tan y \\
y^{\prime} & =\frac{e^{y} \sin \left(x e^{y}\right)-2 x \tan y}{x^{2} \sec ^{2} y-x e^{y} \sin \left(x e^{y}\right)}
\end{aligned}
$$

Theorem

Suppose $f(y)$ is a differentiable function with $f^{\prime}(y) \neq 0$ for any y. Then the inverse function $y=f^{-1}(x)$ of $f(y)$ is differentiable and

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

In other words,

$$
\frac{d y}{d x}=\frac{1}{\frac{d x}{d y}}
$$

Proof.

By chain rule, we have

$$
\begin{aligned}
f\left(f^{-1}(x)\right) & =x \\
f^{\prime}\left(f^{-1}(x)\right)\left(f^{-1}\right)^{\prime}(x) & =1 \\
\left(f^{-1}\right)^{\prime}(x) & =\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
\end{aligned}
$$

Theorem

(1) For $\sin ^{-1}:[-1,1] \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$
\frac{d}{d x} \sin ^{-1} x=\frac{1}{\sqrt{1-x^{2}}}
$$

(2) For $\cos ^{-1}:[-1,1] \rightarrow[0, \pi]$,

$$
\frac{d}{d x} \cos ^{-1} x=-\frac{1}{\sqrt{1-x^{2}}}
$$

(3) For $\tan ^{-1}: \mathbb{R} \rightarrow\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,

$$
\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

Proof.

(1)

$$
\begin{aligned}
y & =\sin ^{-1} x \\
\sin y & =x \\
\cos y \frac{d y}{d x} & =1 \\
\frac{d y}{d x} & =\frac{1}{\cos y} \\
& =\frac{1}{\sqrt{1-\sin ^{2} y}}\left(\text { Note: } \cos y \geq 0 \text { for }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}\right) \\
& =\frac{1}{\sqrt{1-x^{2}}}
\end{aligned}
$$

The other parts can be proved similarly.

Example

Find $\frac{d y}{d x}$ if $y=x^{x}$.

Solution

There are 2 methods.
Method 1. Note that $y=x^{x}=e^{x \ln x}$. Thus

$$
\frac{d y}{d x}=e^{x \ln x}(1+\ln x)=x^{x}(1+\ln x)
$$

Method 2. Taking logarithm on both sides, we have

$$
\begin{aligned}
\ln y & =x \ln x \\
\frac{1}{y} \frac{d y}{d x} & =1+\ln x \\
\frac{d y}{d x} & =y(1+\ln x) \\
& =x^{x}(1+\ln x)
\end{aligned}
$$

Example

Let u and v be functions of x. Show that

$$
\frac{d}{d x} u^{v}=u^{v} v^{\prime} \ln u+u^{v-1} v u^{\prime}
$$

Proof.

We have

$$
\begin{aligned}
\frac{d}{d x} u^{v} & =\frac{d}{d x} e^{v \ln u} \\
& =e^{v \ln u}\left(\left(v^{\prime} \ln u+v \cdot \frac{u^{\prime}}{u}\right)\right. \\
& =u^{v} v^{\prime}\left(\ln u+\frac{v u^{\prime}}{u}\right) \\
& =u^{v} v^{\prime} \ln u+u^{v-1} v u^{\prime}
\end{aligned}
$$

Definition (Second and higher derivatives)

Let $y=f(x)$ be a function. The second derivative of $f(x)$ is the function

$$
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

The second derivative of $y=f(x)$ is also denoted as $f^{\prime \prime}(x)$ or $y^{\prime \prime}$. Let n be a non-negative integer. The n-th derivative of $y=f(x)$ is defined inductively by

$$
\begin{aligned}
\frac{d^{n} y}{d x^{n}} & =\frac{d}{d x}\left(\frac{d^{n-1} y}{d x^{n-1}}\right) \text { for } n \geq 1 \\
\frac{d^{0} y}{d x^{0}} & =y
\end{aligned}
$$

The n-th derivative is also denoted as $f^{(n)}(x)$ or $y^{(n)}$. Note that $f^{(0)}(x)=f(x)$.

Example

Find $\frac{d^{2} y}{d x^{2}}$ for the following functions.
(1) $y=\ln (\sec x+\tan x)$
(2) $x^{2}-y^{2}=1$

Solution

$$
\text { 1. } \begin{aligned}
y^{\prime} & =\frac{1}{\sec x+\tan x}\left(\sec x \tan x+\sec ^{2} x\right) \\
& =\sec x \\
y^{\prime \prime} & =\sec x \tan x
\end{aligned}
$$

2. $2 x-2 y y^{\prime}=0$

$$
\begin{aligned}
y^{\prime} & =\frac{x}{y} \\
y^{\prime \prime} & =\frac{y-x y^{\prime}}{y^{2}} \\
& =\frac{y-x\left(\frac{x}{y}\right)}{y^{2}} \\
& =\frac{y^{2}-x^{2}}{y^{3}}
\end{aligned}
$$

Theorem (Leinbiz's rule)

Let u and v be differentiable function of x. Then

$$
(u v)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} u^{(n-k)} v^{(k)}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ is the binormial coefficient.

Example

$$
\begin{aligned}
& (u v)^{(0)}=u^{(0)} v^{(0)} \\
& (u v)^{(1)}=u^{(1)} v^{(0)}+u^{(0)} v^{(1)} \\
& (u v)^{(2)}=u^{(2)} v^{(0)}+2 u^{(1)} v^{(1)}+u^{(0)} v^{(2)} \\
& (u v)^{(3)}=u^{(3)} v^{(0)}+3 u^{(2)} v^{(1)}+3 u^{(1)} v^{(2)}+u^{(0)} v^{(3)} \\
& (u v)^{(4)}=u^{(4)} v^{(0)}+4 u^{(3)} v^{(1)}+6 u^{(2)} v^{(2)}+4 u^{(1)} v^{(3)}+u^{(0)} v^{(4)} \\
& (u v)^{(5)}=u^{(5)} v^{(0)}+5 u^{(4)} v^{(1)}+10 u^{(3)} v^{(2)}+10 u^{(2)} v^{(3)}+5 u^{(1)} v^{(4)}+u^{(0)} v^{(5)}
\end{aligned}
$$

Proof

We prove the Leibniz's rule by induction on n. When $n=0$, $(u v)^{(0)}=u v=u^{(0)} v^{(0)}$. Assume that for some nonnegative m,

$$
(u v)^{(m)}=\sum_{k=0}^{m}\binom{m}{k} u^{(m-k)} v^{(k)}
$$

Then

$$
\begin{aligned}
& (u v)^{(m+1)} \\
= & \frac{d}{d x}(u v)^{(m)} \\
= & \frac{d}{d x} \sum_{k=0}^{m}\binom{m}{k} u^{(m-k)} v^{(k)} \\
= & \sum_{k=0}^{m}\binom{m}{k}\left(u^{(m-k+1)} v^{(k)}+u^{(m-k)} v^{(k+1)}\right)
\end{aligned}
$$

Proof.

$$
\begin{aligned}
& =\sum_{k=0}^{m}\binom{m}{k} u^{(m-k+1)} v^{(k)}+\sum_{k=0}^{m}\binom{m}{k} u^{(m-k)} v^{(k+1)} \\
& =\sum_{k=0}^{m}\binom{m}{k} u^{(m-k+1)} v^{(k)}+\sum_{k=1}^{m+1}\binom{m}{k-1} u^{(m-(k-1))} v^{(k)} \\
& =\sum_{k=0}^{m}\binom{m}{k} u^{(m-k+1)} v^{(k)}+\sum_{k=1}^{m+1}\binom{m}{k-1} u^{(m-k+1)} v^{(k)} \\
& =\sum_{k=0}^{m+1}\left(\binom{m}{k}+\binom{m}{k-1}\right) u^{(m-k+1)} v^{(k)} \\
& =\sum_{k=0}^{m+1}\binom{m+1}{k} u^{(m+1-k)} v^{(k)}
\end{aligned}
$$

Here we use the convention $\binom{m}{-1}=\binom{m}{m+1}=0$ in the second last equality. This completes the induction step and the proof of the Leibniz's rule.

Example

Let $y=x^{2} e^{3 x}$. Find $y^{(n)}$ where n is a nonnegative integer.

Solution

Let $u=x^{2}$ and $v=e^{3 x}$. Then $u^{(0)}=x^{2}, u^{(1)}=2 x, u^{(2)}=2$ and $u^{(k)}=0$ for $k \geq 3$. On the other hand, $v^{(k)}=3^{k} e^{3 x}$ for any $k \geq 0$. Therefore by Leibniz's rule, we have

$$
\begin{aligned}
y^{(n)} & =\binom{n}{0} u^{(0)} v^{(n)}+\binom{n}{1} u^{(1)} v^{(n-1)}+\binom{n}{2} u^{(2)} v^{(n-2)} \\
& =x^{2}\left(3^{n} e^{3 x}\right)+n(2 x)\left(3^{n-1} e^{3 x}\right)+\frac{n(n-1)}{2!}(2)\left(3^{n-2} e^{3 x}\right) \\
& =\left(3^{n} x^{2}+2 \cdot 3^{n-1} n x+3^{n-2}\left(n^{2}-n\right)\right) e^{3 x} \\
& =3^{n-2}\left(9 x^{2}+6 n x+n^{2}-n\right) e^{3 x}
\end{aligned}
$$

Theorem

Let f be a function on (a, b) and $\xi \in(a, b)$ such that
(1) f is differentiable at $x=\xi$.
(2) Either $f(x) \leq f(\xi)$ for any $x \in(a, b)$, or $f(x) \geq f(\xi)$ for any $x \in(a, b)$.

Then $f^{\prime}(\xi)=0$.

Proof.

Suppose $f(x) \leq f(\xi)$ for any $x \in(a, b)$. The proof for the other case is more or less the same. For any $h<0$ with $a<\xi+h<\xi$, we have $f(\xi+h)-f(\xi) \leq 0$ and h is negative. Thus

$$
f^{\prime}(\xi)=\lim _{h \rightarrow 0^{-}} \frac{f(\xi+h)-f(\xi)}{h} \geq 0
$$

On the other hand, for any $h>0$ with $\xi<\xi+h<b$, we have $f(\xi+h)-f(\xi) \leq 0$ and h is positive. Thus we have

$$
f^{\prime}(\xi)=\lim _{h \rightarrow 0^{+}} \frac{f(\xi+h)-f(\xi)}{h} \leq 0
$$

Therefore $f^{\prime}(\xi)=0$.

Theorem (Rolle's theorem)

Suppose $f(x)$ is a function which satisfies the following conditions.
(1) $f(x)$ is continuous on $[a, b]$.
(2) $f(x)$ is differentiable on (a, b).
(3) $f(a)=f(b)$

Then there exists $\xi \in(a, b)$ such that $f^{\prime}(\xi)=0$.

Proof.

By extreme value theorem, there exist $a \leq \alpha, \beta \leq b$ such that

$$
f(\alpha) \leq f(x) \leq f(\beta) \text { for any } x \in[a, b] .
$$

Since $f(a)=f(b)$, at least one of α, β can be chosen in (a, b) and we let it be ξ. Then we have $f^{\prime}(\xi)=0$ since $f(x)$ attains its maximum or minimum at ξ.

Theorem (Lagrange's mean value theorem)

Suppose $f(x)$ is a function which satisfies the following conditions.
(1) $f(x)$ is continuous on $[a, b]$.
(2) $f(x)$ is differentiable on (a, b).

Then there exists $\xi \in(a, b)$ such that

$$
f^{\prime}(\xi)=\frac{f(b)-f(a)}{b-a}
$$

Proof

Let $g(x)=f(x)-\frac{f(b)-f(a)}{b-a}(x-a)$. Since $g(a)=g(b)=f(a)$, by Rolle's theorem, there exists $\xi \in(a, b)$ such that

$$
g^{\prime}(\xi)=0
$$

$$
\begin{aligned}
f^{\prime}(\xi)-\frac{f(b)-f(a)}{b-a} & =0 \\
f^{\prime}(\xi) & =\frac{f(b)-f(a)}{b-a}
\end{aligned}
$$

Exercise (True or False)

Suppose $f(x)$ is a function which is differentiable on (a, b).
(1) $f(x)$ is constant on (a, b) if and only if $f^{\prime}(x)=0$ on (a, b).

Answer: \mathbf{T}
(2) $f(x)$ is monotonic increasing on (a, b) if and only if $f^{\prime}(x) \geq 0$ on (a, b). Answer: T
(3) If $f(x)$ is strictly increasing on (a, b), then $f^{\prime}(x)>0$ on (a, b).

Answer: F
(4) If $f^{\prime}(x)>0$ on (a, b), then $f(x)$ is strictly increasing on (a, b).

Answer: T

$$
\begin{gathered}
f^{\prime}(x)>0 \\
\Downarrow
\end{gathered}
$$

Strictly increasing
\Downarrow
Monotonic increasing $\quad \Leftrightarrow \quad f^{\prime}(x) \geq 0$

Theorem

Let $f(x)$ be a function which is differentiable on (a, b). Then $f(x)$ is monotonic increasing if and only if $f^{\prime}(x) \geq 0$ for any $x \in(a, b)$.

Proof

Suppose $f(x)$ is monotonic increasing on (a, b). Then for any $x \in(a, b)$, we have $f(x+h)-f(x) \geq 0$ for any $h>0$ and thus

$$
f^{\prime}(x)=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h} \geq 0
$$

On the other hand, suppose $f^{\prime}(x) \geq 0$ for any $x \in(a, b)$. Then for any $\alpha<\beta$ in (a, b), by Lagrange's mean value theorem, there exists $\xi \in(\alpha, \beta)$ such that

$$
f(\beta)-f(\alpha)=f^{\prime}(\xi)(\beta-\alpha) \geq 0
$$

Therefore $f(x)$ is monotonic increasing on (a, b).

Corollary

$f(x)$ is constant on (a, b) if and only if $f^{\prime}(x)=0$ for any $x \in(a, b)$.

Theorem

If $f(x)$ is a differentiable function such that $f^{\prime}(x)>0$ for any $x \in(a, b)$, then $f(x)$ is strictly increasing.

Proof.

Suppose $f^{\prime}(x)>0$ for any $x \in(a, b)$. For any $\alpha<\beta$ in (a, b), by Lagrange's mean value theorem, there exists $\xi \in(\alpha, \beta)$ such that

$$
f(\beta)-f(\alpha)=f^{\prime}(\xi)(\beta-\alpha)>0 .
$$

Therefore $f(x)$ is strictly increasing on (a, b).
The converse of the above theorem is false.

Example

$f(x)=x^{3}$ is strictly increasing on \mathbb{R} but $f^{\prime}(0)=0$ is not positive.

Theorem (Cauchy's mean value theorem)

Suppose $f(x)$ and $g(x)$ are functions which satisfies the following conditions.
(1) $f(x), g(x)$ is continuous on $[a, b]$.
(2) $f(x), g(x)$ is differentiable on (a, b).
(3) $g^{\prime}(x) \neq 0$ for any $x \in(a, b)$.

Then there exists $\xi \in(a, b)$ such that

$$
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

Proof

Let $h(x)=f(x)-\frac{f(b)-f(a)}{g(b)-g(a)}(g(x)-g(a))$.
Since $h(a)=h(b)=f(a)$, by Rolle's theorem, there exists $\xi \in(a, b)$ such that

$$
\begin{aligned}
f^{\prime}(\xi)-\frac{f(b)-f(a)}{g(b)-g(a)} g^{\prime}(\xi) & =0 \\
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)} & =\frac{f(b)-f(a)}{g(b)-g(a)}
\end{aligned}
$$

Theorem (L'Hopital's rule)

Let $a \in[-\infty,+\infty]$. Suppose f and g are differentiable functions such that
(1) $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0$ (or $\pm \infty$).
(2) $g^{\prime}(x) \neq 0$ for any $x \neq a$ (on a neighborhood of a).
(3) $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=L$.

Then the limit of $\frac{f(x)}{g(x)}$ at $x=a$ exists and $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=L$.

Proof

For any $x \neq 0$, by Cauchy's mean value theorem, there exists ξ between a and x such that

$$
\frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f(x)}{g(x)}
$$

Here we redefine $f(a)=g(a)=0$, if necessary, so that f and g are continuous at a. Note that $\xi \rightarrow a$ as $x \rightarrow a$. We have

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a} \frac{f^{\prime}(\xi)}{g^{\prime}(\xi)}=L
$$

Example (Indeterminate form of types $\frac{0}{0}$ and $\frac{\infty}{\infty}$)

1. $\lim _{x \rightarrow 0} \frac{\sin x-x \cos x}{x^{3}}=\lim _{x \rightarrow 0} \frac{x \sin x}{3 x^{2}}=\frac{1}{3}$
2. $\lim _{x \rightarrow 0} \frac{x^{2}}{\ln \sec x}=\lim _{x \rightarrow 0} \frac{2 x}{\frac{\sec x \tan x}{\sec x}}=\lim _{x \rightarrow 0} \frac{2 x}{\tan x}=\lim _{x \rightarrow 0} \frac{2}{\sec ^{2} x}=2$
3. $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{3}\right)}{x-\sin x}=\lim _{x \rightarrow 0} \frac{\frac{x^{2}}{1+x^{3}}}{1-\cos x}=\lim _{x \rightarrow 0} \frac{1}{1+x^{3}} \lim _{x \rightarrow 0} \frac{x^{2}}{1-\cos x}$
$=\lim _{x \rightarrow 0} \frac{2 x}{\sin x}=2$
4. $\lim _{x \rightarrow+\infty} \frac{\ln \left(1+x^{4}\right)}{\ln \left(1+x^{2}\right)}=\lim _{x \rightarrow+\infty} \frac{\frac{4 x^{3}}{1+x^{4}}}{\frac{2 x}{1+x^{2}}}=\lim _{x \rightarrow+\infty} \frac{4 x^{3}\left(1+x^{2}\right)}{2 x\left(1+x^{4}\right)}=2$

Example (Indeterminate form of types $\infty-\infty$ and $0 \cdot \infty$)

5. $\lim _{x \rightarrow 1}\left(\frac{1}{\ln x}-\frac{1}{x-1}\right)=\lim _{x \rightarrow 1} \frac{x-1-\ln x}{(x-1) \ln x}=\lim _{x \rightarrow 1} \frac{1-\frac{1}{x}}{\frac{x-1}{x}+\ln x}$

$$
=\lim _{x \rightarrow 1} \frac{x-1}{x-1+x \ln x}=\lim _{x \rightarrow 1} \frac{1}{2+\ln x}=\frac{1}{2}
$$

6. $\lim _{x \rightarrow 0} \cot 3 x \tan ^{-1} x=\lim _{x \rightarrow 0} \frac{\tan ^{-1} x}{\tan 3 x}=\lim _{x \rightarrow 0} \frac{\frac{1}{1+x^{2}}}{3 \sec ^{2} 3 x}$
$=\lim _{x \rightarrow 0} \frac{1}{3\left(1+x^{2}\right) \sec ^{2} 3 x}=\frac{1}{3}$
7. $\lim _{x \rightarrow 0^{+}} x \ln \sin x$

$$
\begin{aligned}
& =\lim _{x \rightarrow 0^{+}} \frac{\ln \sin x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{\frac{\cos x}{\sin x}}{-\frac{1}{x^{2}}} \\
& =\lim _{x \rightarrow 0^{+}} \frac{-x^{2} \cos x}{\sin x}=0
\end{aligned}
$$

8. $\lim _{x \rightarrow+\infty} x \ln \left(\frac{x+1}{x-1}\right)=\lim _{x \rightarrow+\infty} \frac{\ln (x+1)-\ln (x-1)}{\frac{1}{x}}$
$=\lim _{x \rightarrow+\infty} \frac{\frac{1}{x+1}-\frac{1}{x-1}}{-\frac{1}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{2 x^{2}}{(x+1)(x-1)}=2$

Example (Indeterminate form of types $0^{0}, 1^{\infty}$ and ∞^{0})

Evaluate the following limits.

(1) $\lim _{x \rightarrow 0^{+}} x^{\sin x}$
(2) $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}$
(3) $\lim _{x \rightarrow+\infty}(1+2 x)^{\frac{1}{3 \ln x}}$

Solution

(1) $\ln \left(\lim _{x \rightarrow 0^{+}} x^{\sin x}\right)=\lim _{x \rightarrow 0^{+}} \ln \left(x^{\sin x}\right)=\lim _{x \rightarrow 0^{+}} \sin x \ln x=\lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x}$
$=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc x \cot x}=\lim _{x \rightarrow 0^{+}} \frac{-\sin ^{2} x}{x \cos x}=0$.
Thus $\lim _{x \rightarrow 0^{+}} x^{\sin x}=e^{0}=1$.
(2) $\ln \left(\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}\right)=\lim _{x \rightarrow 0} \ln (\cos x)^{\frac{1}{x^{2}}}=\lim _{x \rightarrow 0} \frac{\ln \cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{-\tan x}{2 x}$
$=\lim _{x \rightarrow 0} \frac{-\sec ^{2} x}{2}=-\frac{1}{2}$.
Thus $\lim _{x \rightarrow 0}(\cos x)^{\frac{1}{x^{2}}}=e^{-\frac{1}{2}}$.
(3) $\ln \left(\lim _{x \rightarrow+\infty}(1+2 x)^{\frac{3}{\ln x}}\right)=\lim _{x \rightarrow+\infty} \frac{3 \ln (1+2 x)}{\ln x}=\lim _{x \rightarrow+\infty} \frac{6 x}{1+2 x}=3$.

Thus $\lim _{x \rightarrow+\infty}(1+2 x)^{\frac{1}{3 \ln x}}=e^{3}$.

Example

The following shows some wrong use of L'Hopital rule.
(1) $\lim _{x \rightarrow 0} \frac{\sec x-1}{e^{2 x}-1}=\lim _{x \rightarrow 0} \frac{\sec x \tan x}{2 e^{2 x}}=\lim _{x \rightarrow 0} \frac{\sec ^{2} x \tan x+\sec ^{3} x}{4 e^{2 x}}=\frac{1}{4}$

This is wrong because $\lim _{x \rightarrow 0} e^{2 x} \neq 0, \pm \infty$. One cannot apply L'Hopital rule $\lim _{x \rightarrow 0} \frac{\sec x \tan x}{2 e^{2 x}}$. The correct solution is

$$
\lim _{x \rightarrow 0} \frac{\sec x-1}{e^{2 x}-1}=\lim _{x \rightarrow 0} \frac{\sec x \tan x}{2 e^{2 x}}=0
$$

(2) $\lim _{x \rightarrow+\infty} \frac{5 x-2 \cos ^{2} x}{3 x+\sin ^{2} x}=\lim _{x \rightarrow+\infty} \frac{5+2 \cos x \sin x}{3+\sin x \cos x}=\lim _{x \rightarrow+\infty} \frac{2\left(\cos ^{2} x-\sin ^{2} x\right)}{\cos ^{2} x-\sin ^{2} x}=2$ This is wrong because $\lim _{x \rightarrow+\infty}(5+2 \cos x \sin x)$ and $\lim _{x \rightarrow+\infty}(3+\cos x \sin x)$ do not exist. One cannot apply L'Hopital rule to $\lim _{x \rightarrow+\infty} \frac{5+2 \cos x \sin x}{3+\sin x \cos x}$. The correct solution is

$$
\lim _{x \rightarrow+\infty} \frac{5 x-2 \cos ^{2} x}{3 x+\sin ^{2} x}=\lim _{x \rightarrow+\infty} \frac{5-\frac{2 \cos ^{2} x}{x}}{3+\frac{\sin ^{2} x}{x}}=\frac{5}{3}
$$

Definition (Taylor polynomial)

Let $f(x)$ be a function such that the n-th derivative exists at $x=a$. The Taylor polynomial of degree n of $f(x)$ at $x=a$ is the polynomial
$p_{n}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}$.

Theorem

The Taylor polynomial $p_{n}(x)$ of degree n of $f(x)$ at $x=a$ is the unique polynomial such that

$$
p_{n}^{(k)}(a)=f^{(k)}(a) \text { for } k=0,1,2, \ldots, n
$$

Example

Let $f(x)=\sqrt{1+x}=(1+x)^{\frac{1}{2}}$. The first four derivatives of $f(x)$ are

$$
\begin{array}{ll}
f^{\prime}(x)=\frac{1}{2}(1+x)^{-\frac{1}{2}} ; & f^{(3)}(x)=\frac{1 \cdot 3}{2^{3}}(1+x)^{-\frac{5}{2}} \\
f^{\prime \prime}(x)=-\frac{1}{2^{2}}(1+x)^{-\frac{3}{2}} ; & f^{(4)}(x)=-\frac{1 \cdot 3 \cdot 5}{2^{4}}(1+x)^{-\frac{7}{2}}
\end{array}
$$

The k-th derivative of $f(x)$ at $x=0$ is

$$
f^{(k)}(0)=\frac{(-1)^{k+1}(2 k-3)!!}{2^{k}}=\frac{(-1)^{k+1} \cdot 1 \cdot 3 \cdot 5 \cdots(2 k-5)(2 k-3)}{2^{k}} .
$$

Therefore the Taylor polynomial of $f(x)$ of degree n at $x=0$ is

$$
\begin{aligned}
p_{n}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(3)}(0)}{3!} x^{3}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n} \\
& =1+\frac{1}{2} x-\frac{1}{2!} \cdot \frac{1}{2^{2}} x^{2}+\frac{1}{3!} \cdot \frac{1 \cdot 3}{2^{3}} x^{3}+\cdots+\frac{1}{n!} \cdot \frac{(2 n-3)!!}{2^{n}} x^{n} \\
& =1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\cdots+\frac{(-1)^{n+1}(2 n-3)!!x^{n}}{2^{n} n!}
\end{aligned}
$$

Figure: Taylor polynomials for $f(x)=\sqrt{1+x}$ at $x=0$

Example

Let $f(x)=\cos x$. The n-th derivatives of $f(x)$ is

$$
\frac{d^{n}}{d x^{n}} \cos x= \begin{cases}(-1)^{k} \cos x, & \text { if } n=2 k \text { is even } \\ (-1)^{k} \sin x, & \text { if } n=2 k-1 \text { is odd }\end{cases}
$$

Thus

$$
f^{(n)}(0)= \begin{cases}(-1)^{k}, & \text { if } n=2 k \text { is even } \\ 0, & \text { if } n=2 k-1 \text { is odd }\end{cases}
$$

Therefore the Taylor polynomial of $f(x)$ of degree $n=2 k$ at $x=0$ is

$$
\begin{aligned}
p_{2 k}(x) & =f(0)+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\frac{f^{(4)}(0)}{4!} x^{4}+\frac{f^{(6)}(0)}{6!} x^{6}+\cdots+\frac{f^{(2 k)}(0)}{(2 k)!} x^{2 k} \\
& =1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{k} x^{2 k}}{(2 k)!}
\end{aligned}
$$

Figure: Taylor polynomials for $f(x)=\cos x$ at $x=0$

Example

We are going to find the Taylor polynomial of $f(x)=\frac{1}{x}$ at $x=1$. The k-th derivatives of $f(x)$ is

$$
\frac{d^{k}}{d x^{k}} \frac{1}{x}=\frac{(-1)^{k} k!}{x^{k+1}}
$$

Thus

$$
f^{(k)}(1)=(-1)^{k} k!.
$$

Therefore the Taylor polynomial of $f(x)$ of degree n at $x=1$ is

$$
\begin{aligned}
p_{n}(x) & =f(1)+f^{\prime}(1)(x-1)+\frac{f^{\prime \prime}(1)}{2!}(x-1)^{2}+\cdots+\frac{f^{(n)}(1)}{(n)!}(x-1)^{n} \\
& =1-(x-1)+\frac{2!(x-1)^{2}}{2!}-\frac{3!(x-1)^{2}}{3!}+\cdots+\frac{(-1)^{n} n!(x-1)^{n}}{n!} \\
& =1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots+(-1)^{n}(x-1)^{n}
\end{aligned}
$$

Figure: Taylor polynomials for $f(x)=\frac{1}{x}$ at $x=1$

Example

We are going to find the Taylor polynomial of $f(x)=(1+x)^{\alpha}$ at $x=0$, where $\alpha \in \mathbb{R}$. Then

$$
\begin{aligned}
f^{(k)}(0) & =\left.\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)(1+x)^{\alpha-k}\right|_{x=0} \\
& =\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)
\end{aligned}
$$

Therefore the Taylor polynomial of $f(x)$ of degree n at $x=0$ is

$$
\begin{aligned}
p_{n}(x) & =f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0) x^{2}}{2!}+\frac{f^{(3)}(0) x^{3}}{3!}+\cdots+\frac{f^{(n)}(0) x^{n}}{(n)!} \\
& =1+\alpha x+\frac{\alpha(\alpha-1) x^{2}}{2!}+\cdots+\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1) x^{n}}{n!} \\
& =\binom{\alpha}{0}+\binom{\alpha}{1} x+\binom{\alpha}{2} x^{2}+\cdots+\binom{\alpha}{n} x^{n}
\end{aligned}
$$

where

$$
\binom{\alpha}{n}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-n+1)}{n!}
$$

Example

The following table shows the Taylor polynomials of degree n for $f(x)$ at $x=0$.

$$
\begin{array}{cl}
f(x) & \text { Taylor polynomial } \\
e^{x} & 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots+\frac{x^{n}}{n!} \\
\cos x & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots+\frac{(-1)^{k} x^{2 k}}{(2 k)!}, n=2 k \\
\sin x & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots+\frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!}, n=2 k+1 \\
\ln (1+x) & x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+\frac{(-1)^{n+1} x^{n}}{n} \\
\frac{1}{1-x} & 1+x+x^{2}+x^{3}+\cdots+x^{n} \\
\sqrt{1+x} & 1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\cdots+\frac{(-1)^{n+1}(2 n-3)!!x^{n}}{2^{n} n!} \\
(1+x)^{\alpha} & 1+\alpha x+\frac{\alpha(\alpha-1) x^{2}}{2!}+\frac{\alpha(\alpha-1)(\alpha-2) x^{3}}{3!}+\cdots+\binom{\alpha}{n} x^{n}
\end{array}
$$

Example

The following table shows the Taylor polynomials of degree n for $f(x)$ at the given center.

$$
\begin{array}{cl}
f(x) & \text { Taylor polynomial } \\
\cos x ; x=\pi & -1+\frac{(x-\pi)^{2}}{2!}-\frac{(x-\pi)^{4}}{4!}+\cdots+\frac{(-1)^{k+1}(x-\pi)^{2 k}}{(2 k)!} \\
e^{x} ; x=2 & e^{2}+e^{2}(x-2)+\frac{e^{2}(x-2)^{2}}{2!}+\cdots+\frac{e^{2}(x-2)^{n}}{n!} \\
\frac{1}{x} ; x=1 & 1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots+(-1)^{n}(x-1)^{n} \\
\frac{1}{2+x} ; x=0 & \frac{1}{2}-\frac{x}{4}+\frac{x^{2}}{8}-\frac{x^{3}}{16}+\cdots+\frac{(-1)^{n} x^{n}}{2^{n+1}} \\
\frac{1}{3-2 x} ; x=1 & 1+2(x-1)+4(x-1)^{2}+8(x-1)^{3}+\cdots+2^{n}(x-1)^{n} \\
\sqrt{100-2 x} ; x=0 & 10-\frac{x}{10}-\frac{x^{2}}{2000}-\frac{x^{3}}{200000}-\cdots-\frac{(2 n-3)!!x^{n}}{10^{2 n-1} n!}
\end{array}
$$

Theorem (Taylor's theorem)

Let $f(x)$ be a function such that the $n+1$-th derivative exists. Let $p_{n}(x)$ be the Taylor polynomial of degree n of $f(x)$ at $x=a$. Then for any x, there exists ξ between a and x such that

$$
\begin{aligned}
f(x) & =p_{n}(x)+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} \\
& =f(a)+f^{\prime}(a)(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
\end{aligned}
$$

Note: Taylor polynomial can be used to find the approximate value of a function for a given value of x. The Taylor's theorem tell us the possible values of the error, that is the difference between the approximated value $p_{n}(x)$ and the actual value $f(x)$.

Proof (Taylor's theorem)

First, suppose $f^{(k)}(a)=0$ for $k=0,1,2, \ldots, n$. Then $p_{n}(x)=0$ is the zero polynomial. Let $g(x)=(x-a)^{n+1}$. Observe that $g^{(k)}(a)=0$ for $k=0,1,2, \ldots, n$ and $g^{(n+1)}(x)=(n+1)$!. Applying Cauchy's mean value theorem successively, there exists $\xi_{1}, \xi_{2}, \ldots, \xi=\xi_{n+1}$ between a and x such that

$$
\begin{aligned}
\frac{f^{\prime}\left(\xi_{1}\right)}{g^{\prime}(\xi)} & =\frac{f(x)-f(a)}{g(x)-g(a)}=\frac{f(x)}{g(x)} \quad(f, g \text { on }[a, x]) \\
\frac{f^{\prime \prime}\left(\xi_{2}\right)}{g^{\prime \prime}\left(\xi_{2}\right)} & =\frac{f^{\prime}\left(\xi_{1}\right)-f^{\prime}(a)}{g^{\prime}\left(\xi_{1}\right)-g^{\prime}(a)}=\frac{f^{\prime}\left(\xi_{1}\right)}{g^{\prime}\left(\xi_{1}\right)}=\frac{f(x)}{g(x)} \quad\left(f^{\prime}, g^{\prime} \text { on }\left[a, \xi_{1}\right]\right) \\
& \vdots \\
\frac{f^{(n+1)}(\xi)}{g^{(n+1)}(\xi)} & =\frac{f^{(n)}\left(\xi_{n}\right)-f^{(n)}(a)}{g^{(n)}\left(\xi_{n}\right)-g^{(n)}(a)}=\frac{f^{(n)}\left(\xi_{n}\right)}{g^{(n)}\left(\xi_{n}\right)}=\frac{f(x)}{g(x)} \quad\left(f^{(n)}, g^{(n)} \text { on }\left[a, \xi_{n}\right]\right)
\end{aligned}
$$

Thus

$$
f(x)=\frac{f^{(n+1)}(\xi)}{g^{(n+1)}(\xi)} g(x)=\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
$$

Proof (Taylor's theorem).

For the general case, let

$$
h(x)=f(x)-p_{n}(x)
$$

Then $h^{(k)}(a)=0$ for $k=0,1,2, \ldots, n$ and $h^{(n+1)}(x)=f^{(n+1)}(x)$. Applying the first part of the proof to $h(x)$, there exists ξ between a and x such that

$$
\begin{aligned}
h(x) & =\frac{h^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1} \\
f(x)-p_{n}(x) & =\frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}
\end{aligned}
$$

as desired.

Example

Let $f(x)=\cos x$.
The Taylor polynomial of degree 5 for $f(x)$ at $x=0$ is

$$
p_{5}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}
$$

For any $|x| \leq 1.5$, we have

$$
\left|\cos x-p_{5}(x)\right|=\frac{\left|f^{(6)}(\xi)\right|}{6!}(1.5)^{6} \leq \frac{1.5^{6}}{6!}<0.01583
$$

The Taylor polynomial of degree 11 for $f(x)$ at $x=0$ is

$$
p_{11}(x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}-\frac{x^{6}}{720}+\frac{x^{8}}{40320}-\frac{x^{10}}{3628800}
$$

For any $|x| \leq 1.5$, we have

$$
\left|\cos x-p_{11}(x)\right|=\frac{\left|f^{(12)}(\xi)\right|}{12!}(1.5)^{12} \leq \frac{1.5^{12}}{12!}<2.71 \times 10^{-7}
$$

Figure: Taylor polynomials for $f(x)=\cos x$

Example

The following table shows the value of $p_{n}(x)$, the actual error which is difference $\left|\cos x-p_{n}(x)\right|$ and the largest possible error $\frac{x^{n+1}}{(n+1)!}$ for $x=1.5$ and $x=3$.

n	$x=1.5$	Error	Largest	$x=3$	Error	Largest
1	1	0.9292628	1.125	1	1.98999	4.5
3	-0.125	0.19574	0.21094	-3.5	2.51001	3.375
5	0.0859372	0.01521	0.01583	-0.125	0.86499	1.0125
7	0.0701172	6.21×10^{-4}	6.36×10^{-4}	-1.1375	0.14751	0.16273
9	0.0707528	1.57×10^{-5}	1.59×10^{-5}	-0.97478	0.01522	0.01628
11	0.0707369	2.68×10^{-7}	2.71×10^{-7}	-0.99105	0.00106	0.00111
\cos	0.0707372			-0.98999		

Example

Let $f(x)=\ln (1+x)$. Then $f^{(n)}(x)=\frac{(-1)^{n+1}(n-1)!}{(1+x)^{n}}$ for $n \geq 1$.
The Taylor polynomial of degree n of $f(x)$ is

$$
p_{n}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n} .
$$

Note that $f(1)=\ln 2$. By Taylor's theorem, there exists $0<\xi<1$ such that

$$
\left|\ln 2-p_{n}(1)\right|=\frac{\left|f^{(n+1)}(\xi)\right|}{(n+1)!}=\frac{1}{(n+1)(1+\xi)^{n+1}}<\frac{1}{n+1}
$$

When $n=10,000$, we have $\left|\ln 2-p_{10000}(1)\right|<\frac{1}{10001}$. As a matter of fact,

$$
\begin{array}{r}
p_{10000}(1)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots-\frac{1}{10000} \underset{\ln 2}{ } \approx 0.69309718
\end{array}
$$

Example

$$
f(x)=\ln (1+x) ; p_{n}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots+(-1)^{n+1} \frac{x^{n}}{n} .
$$

For $x=2$, by Taylor's theorem, there exists $0<\xi<2$ such that the error is

$$
E_{n}=\left|\ln 3-p_{n}(2)\right|=\frac{\left|f^{(n+1)}(\xi)\right|}{(n+1)!} \cdot 2^{n+1}=\frac{2^{n+1}}{(n+1)(1+\xi)^{n+1}} .
$$

Note that $\frac{2^{n+1}}{(n+1)^{n+1}}<E_{n}<\frac{2^{n+1}}{n+1}$. The table below shows the least possible, largest possible and actual values of the error E_{n} for various n.

n	$p_{n}(2)$	Least	Actual	Largest
5	5.06667	0.01463	3.96805	10.6667
10	-64.8254	0.00105	65.924	186.18
15	1424.42	9.52×10^{-5}	1423.33	4096
20	-34359.7	9.55×10^{-6}	34360.8	99864.4

The actual value is $f(2)=\ln (3) \approx 1.09861$. One can never get a good approximation of $\ln 3$ from $p_{n}(2)$ because $p_{n}(2)$ is divergent as $n \rightarrow \infty$.

Figure: Taylor polynomials for $f(x)=\ln (1+x)$

Definition (Taylor series)

Let $f(x)$ be an infinitely differentiable function. The Taylor series of $f(x)$ at $x=a$ is the infinite power series

$$
T(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\frac{f^{(3)}(a)}{3!}(x-a)^{3}+\cdots
$$

Example

The following table shows the Taylor series for $f(x)$ at the given center.

$$
\begin{array}{cl}
f(x) & \text { Taylor series } \\
e^{x} ; x=0 & 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots \\
\cos x ; x=0 & 1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\sin x ; x=\pi & -(x-\pi)+\frac{(x-\pi)^{3}}{3!}-\frac{(x-\pi)^{5}}{5!}+\cdots \\
\ln x ; x=1 & (x-1)-\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}-\frac{(x-1)^{4}}{4}+\cdots \\
\sqrt{1+x} ; x=0 & 1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\cdots \\
\frac{1}{\sqrt{1+x}} ; x=0 & 1-\frac{x}{2}+\frac{3 x^{2}}{8}-\frac{5 x^{3}}{16}+\frac{35 x^{4}}{128}-\frac{63 x^{5}}{256}+\cdots \\
(1+x)^{\alpha} ; x=0 & 1+\alpha x+\frac{\alpha(\alpha-1) x^{2}}{2!}+\frac{\alpha(\alpha-1)(\alpha-2) x^{3}}{3!}+\cdots
\end{array}
$$

Example

$$
\begin{array}{cl}
f(x) & \text { Taylor series } \\
e^{x} ; & \sum_{k=0}^{\infty} \frac{x^{k}}{k!} \\
\cos x ; & \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k}}{(2 k)!} \\
\sin x ; & \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{(2 k+1)!} \\
\ln (1+x) ; & \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^{k}}{k} \\
\frac{1}{1-x} ; & \sum_{k=0}^{\infty} x^{k} \\
(1+x)^{\alpha} ; & \sum_{k=0}^{\infty}\binom{\alpha}{k} x^{k}, \quad\binom{\alpha}{k}=\frac{\alpha(\alpha-1)(\alpha-2) \cdots(\alpha-k+1)}{k!} \\
\tan ^{-1} x ; & \sum_{k=0}^{\infty} \frac{(-1)^{k} x^{2 k+1}}{2 k+1} \\
\sin ^{-1} x ; & \sum_{k=0}^{\infty} \frac{(2 k)!x^{2 k+1}}{4 k(k!)^{2}(2 k+1)}
\end{array}
$$

Theorem

Suppose $T(x)$ is the Taylor series of $f(x)$ at $x=0$. Then for any positive integer k, the Taylor series for $f\left(x^{k}\right)$ at $x=0$ is $T\left(x^{k}\right)$.

Example

$$
\begin{array}{ll}
f(x) & \text { Taylor series at } x=0 \\
\frac{1}{1+x^{2}} & 1-x^{2}+x^{4}-x^{6}+\cdots \\
\frac{1}{\sqrt{1-x^{2}}} & 1+\frac{x^{2}}{2}+\frac{3 x^{4}}{8}+\frac{5 x^{6}}{16}+\frac{35 x^{8}}{128}+\cdots \\
\frac{\sin x^{2}}{x^{2}} & 1-\frac{x^{4}}{3!}+\frac{x^{8}}{5!}-\frac{x^{12}}{7!}+\cdots
\end{array}
$$

Theorem

Suppose the Taylor series for $f(x)$ at $x=0$ is

$$
T(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

Then the Taylor series for $f^{\prime}(x)$ is

$$
T^{\prime}(x)=\sum_{k=1}^{\infty} k a_{k} x^{k-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots .
$$

Example

Find the Taylor series of the following functions.
(1) $\frac{1}{(1+x)^{2}}$
(2) $\tan ^{-1} x$

Solution

(1) Let $F(x)=-\frac{1}{1+x}$ so that $F^{\prime}(x)=\frac{1}{(1+x)^{2}}$. The Taylor series for $F(x)$ at $x=0$ is

$$
T(x)=-1+x-x^{2}+x^{3}-x^{4}+\cdots
$$

Therefore the Taylor series for $F^{\prime}(x)=\frac{1}{(1+x)^{2}}$ is

$$
T^{\prime}(x)=1-2 x+3 x^{2}-4 x^{3}+\cdots
$$

Solution

2. Suppose the Taylor series for $f(x)=\tan ^{-1} x$ at $x=0$ is

$$
T(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4} \cdots
$$

Now comparing $T^{\prime}(x)$ with the Taylor series for $f^{\prime}(x)=\frac{1}{1+x^{2}}$ which takes the form

$$
1-x^{2}+x^{4}-x^{6}+\cdots
$$

we obtain the values of $a_{1}, a_{2}, a_{3}, \ldots$ and get

$$
T(x)=a_{0}+x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

Since $a_{0}=T(0)=f(0)=0$, we have

$$
T(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

Theorem

Suppose the Taylor series for $f(x)$ and $g(x)$ at $x=0$ are

$$
\begin{aligned}
& S(x)=\sum_{k=0}^{\infty} a_{k} x^{k}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \\
& T(x)=\sum_{k=0}^{\infty} b_{k} x^{k}=b_{0}+b_{1} x+b_{2} x^{2}+b_{3} x^{3}+\cdots,
\end{aligned}
$$

respectively. Then the Taylor series for $f(x) g(x)$ at $x=0$ is

$$
\begin{aligned}
& \sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) x^{n} \\
= & a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) x+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) x^{2}+\cdots
\end{aligned}
$$

Proof.

The coefficient of x^{n} of the Taylor series of $f(x) g(x)$ at $x=0$ is

$$
\begin{aligned}
\frac{(f g)^{(n)}(0)}{n!} & =\sum_{k=0}^{n}\binom{n}{k} \frac{f^{(k)}(0) g^{(n-k)}(0)}{n!} \quad \text { (Leibniz's formula) } \\
& =\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} \cdot \frac{f^{(k)}(0) g^{(n-k)}(0)}{n!} \\
& =\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} \cdot \frac{g^{(n-k)}(0)}{(n-k)!} \\
& =\sum_{k=0}^{n} a_{k} b_{n-k}
\end{aligned}
$$

Example

(1) The Taylor series for $e^{4 x} \ln (1+x)$ is

$$
\begin{aligned}
& \left(1+4 x+\frac{16 x^{2}}{2!}+\frac{64 x^{3}}{3!}+\cdots\right)\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots\right) \\
= & x+\left(-\frac{1}{2}+4\right) x^{2}+\left(\frac{1}{3}+4 \cdot\left(-\frac{1}{2}\right)+8\right) x^{3}+\cdots \\
= & x+\frac{7 x^{2}}{2}+\frac{19 x^{3}}{3}+\cdots
\end{aligned}
$$

(2) The Taylor series for $\frac{\tan ^{-1} x}{\sqrt{1-x^{2}}}$ is

$$
\begin{aligned}
& \left(x-\frac{x^{3}}{3}+\frac{x^{5}}{5}+\cdots\right)\left(1+\frac{x^{2}}{2}+\frac{3 x^{4}}{8}+\cdots\right) \\
= & x+\left(\frac{1}{2}-\frac{1}{3}\right) x^{3}+\left(\frac{3}{4}-\frac{1}{3} \cdot \frac{1}{2}+\frac{1}{5}\right) x^{5}+\cdots \\
= & x+\frac{x^{3}}{6}+\frac{49 x^{5}}{120}+\cdots
\end{aligned}
$$

Theorem

For any power series

$$
S(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots
$$

there exists $R \in[0,+\infty]$ called radius of convergence such that
(1) $S(x)$ is absolutely convergent for any $|x|<R$ and divergent for any $|x|>R$. For $|x|=R, S(x)$ may or may not be convergent.
(2) When $S(x)$ is considered as a function of x, it is differentiable on $(-R, R)$ and its derivative is

$$
S^{\prime}(x)=\sum_{n=1}^{\infty} n a_{n} x^{n-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots
$$

Caution! There exists R such that the Taylor series $T(x)$ is convergent when $|x|<R$. Although in most examples, $T(x)$ converges to $f(x)$ when it is convergent, there are examples that $T(x)$ does not converge to $f(x)$.

Example

The following table shows the convergence of Taylor series of various functions.

$$
\begin{array}{ccccc}
f(x) & T(x) & R & x=-R & x=R \\
e^{x} & 1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots & +\infty & \text { Not Applicable } & \text { Not Applicable } \\
\cos x & 1-x^{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots & +\infty & \text { Not Applicable } & \text { Not Applicable } \\
\sin x & x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots & +\infty & \text { Not Applicable } & \text { Not Applicable } \\
\ln (1+x) & x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots & 1 & \text { Divergent } & \ln 2 \\
\sqrt{1+x} & 1+\frac{x}{2}-\frac{x^{2}}{8}+\frac{x^{3}}{16}-\frac{5 x^{4}}{128}+\cdots & 1 & 0 & \sqrt{2} \\
\frac{1}{1+x^{2}} & 1-x^{2}+x^{4}-x^{6}+\cdots & 1 & \text { Divergent } & \text { Divergent } \\
\tan x & x+\frac{x^{3}}{3}+\frac{2 x^{5}}{15}+\frac{17 x^{7}}{315}+\cdots & \frac{\pi}{2} & \text { Divergent } & \text { Divergent } \\
\tan -1 x & x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots & 1 & -\frac{\pi}{4} & \frac{\pi}{4}
\end{array}
$$

Question

Let $T(x)$ be the Taylor series of a function $f(x)$ at $x=$ a. Does $T(x)$ always converge to $f(x)$ at the points where $T(x)$ is convergent?

Answer

No. There exists function $f(x)$ with Taylor series $T(x)$ at $x=$ a such that
(1) $T(x)$ is convergent for any real number $x \in \mathbb{R}$, and
(2) $T(x)$ does not converge to $f(x)$ for any $x \neq a$.

Theorem

Let

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

Then the Taylor series for $f(x)$ at $x=0$ is $T(x)=0$.
Note. It is obvious that $f(x) \neq 0$ when $x \neq 0$. Therefore $T(x) \neq f(x)$ for any $x \neq 0$.

Proof.

We claim that for any nonnegative integer n, we have

$$
f^{(n)}(x)= \begin{cases}\frac{P_{n}(x)}{x^{3 n}} e^{-\frac{1}{x^{2}}}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases}
$$

for some polynomial $P_{n}(x)$. In particular, $f^{(n)}(0)=0$ for any $n=0,1,2, \cdots$ which implies that $T(x)=0$. We prove that claim by induction on n. When $n=0$, $f^{(0)}(x)=f(x)$ and there is nothing to prove. Suppose the claim is true for $n=k$. Then when $x \neq 0$,

$$
f^{(k+1)}=\frac{x^{3 k}\left(P_{k}^{\prime}+\frac{2 P_{k}}{x^{3}}\right)-3 k x^{3 k-1} P_{k}}{x^{6 k}} e^{-\frac{1}{x^{2}}}=\frac{x^{3} P_{k}^{\prime}-3 k x^{2} P_{k}+2 P_{k}}{x^{3(k+1)}} e^{-\frac{1}{x^{2}}} .
$$

We may take $P_{k+1}=x^{3} P_{k}^{\prime}-3 k x^{2} P_{k}+2 P_{k}$. On the other hand,

$$
f^{(k+1)}(0)=\lim _{h \rightarrow 0} \frac{f^{(k)}(h)-f^{(k)}(0)}{h}=\lim _{h \rightarrow 0} \frac{P_{k}(h)}{h^{3 k}} e^{-\frac{1}{h^{2}}}=\lim _{y \rightarrow+\infty} \frac{y^{3 k} P_{k}\left(\frac{1}{y}\right)}{e^{y^{2}}}=0 .
$$

This completes the induction step and the proof of the claim

Example

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2}{x^{3}} e^{-\frac{1}{x^{2}}} \\
f^{\prime \prime}(x) & =\frac{-6 x^{2}+4}{x^{6}} e^{-\frac{1}{x^{2}}} \\
f^{(3)}(x) & =\frac{24 x^{4}-36 x^{2}+8}{x^{9}} e^{-\frac{1}{x^{2}}} \\
f^{(4)}(x) & =\frac{-120 x^{6}+300 x^{4}-144 x^{2}+16}{x^{12}} e^{-\frac{1}{x^{2}}} \\
f^{(5)}(x) & =\frac{720 x^{8}-2640 x^{6}+2040 x^{4}-480 x^{2}+32}{x^{15}} e^{-\frac{1}{x^{2}}}
\end{aligned}
$$

Figure: $f(x)=e^{-\frac{1}{x^{2}}}$

