The Chinese University of Hong Kong
 Department of Mathematics

MMAT 5140 Probability Theory 2015-2016
 Suggested Solution to Test

1 mark will be deducted for each wrong important concept even if everything else in a proof/ statement is correct. Methods not written below are also accepted, but they may not have their detailed marks arrangements below.

1. (a) $\mathbf{2}$ mark for each correct axiom.
i. Axiom I: $P(A) \geq 0 \forall A \in \mathcal{E}$;
ii. Axiom II: $P(\Omega)=1$;
iii. Axiom III: For any disjoint sequence $\left\{A_{j}\right\} \subseteq \mathcal{E}$,

$$
P\left(\bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} P\left(A_{j}\right)
$$

(b) Marks will be deducted depending on how unclear the explanation of the construction of the counterexample.

The statement if false. An example to this statement:
Define $\Omega=\{0,1,2\}, \mathcal{E}=\mathcal{P}(\Omega)$ and

$$
P(\{0\})=P(\{1\})=0, \quad P(\{2\})=1 .
$$

Define $A=\{0\}, B=\{1\}$, then $P(A \backslash B)=P(B \backslash A)=0$ but $A \neq B$.
2. 1 mark will be deducted without explaining the reordering of the indexes clearly (if one did intend to reorder it); $\mathbf{2}$ marks will be deducted for the lack of consideration of the set $\{X=0\} ; \mathbf{2}$ marks will be deducted for assuming $c_{j} \geq 0 \forall 1 \leq j \leq N$; mark(s) will be deducted if different cases are considered but some cases are missing, depending on the number of cases missed.

Set $c_{N+1}=0$ and $A_{N+1}=\{X=0\}=\left(\bigcup_{j=1}^{N} A_{j}\right)^{c}$. Note that A_{1}, \cdots, A_{N+1} form a partition of the sample space Ω and

$$
\{X \leq t\}=\bigcup\left\{A_{\varphi(j)}: c_{j} \leq t\right\} .
$$

Hence, the required distribution function is (finite additivity of disjoint sets is used in the last step)

$$
F_{X}(t)=P(X \leq t)=P\left(\bigcup\left\{A_{\varphi(j)}: c_{j} \leq t\right\}\right)=\sum_{c_{j} \leq t} P\left(A_{j}\right) .
$$

3. (a)

$$
\begin{aligned}
P\left(A_{1} \bigcup A_{2}\right) & =P\left(A_{1} \bigcup\left(A_{2} \backslash A_{1}\right)\right) \\
& =P\left(A_{1}\right)+P\left(A_{2} \backslash A_{1}\right) \\
& \leq P\left(A_{1}\right)+P\left(A_{2}\right) .
\end{aligned}
$$

(b) 4 marks will be given if the finite case is proven and 2 marks will be given with the intention of taking limits from the finite case and using the continuity of probabilities respectively; $\mathbf{4}$ marks will be given if one attempted to using the probability axioms directly by setting a suitable sequence of sets and 4 marks will be given to the correct use of axioms.

Set $F_{j}=E_{j} \backslash \bigcup_{i=1}^{j-1} E_{i}$, then $\left\{F_{j}\right\}$ is a disjoint sequence, $F_{j} \subseteq E_{j}$ and $\bigcup_{j=1}^{\infty} F_{j}=\bigcup_{j=1}^{\infty} E_{j}$. Using the countably additivity of measure,

$$
P\left(\bigcup_{j=1}^{\infty} E_{j}\right)=P\left(\bigcup_{j=1}^{\infty} F_{j}\right)=\sum_{j=1}^{\infty} P\left(F_{j}\right) \leq \sum_{j=1}^{\infty} P\left(E_{j}\right) .
$$

4. (a) 4 marks will be deducted if only the finite case is considered.

A sequence of events $\left\{A_{j}\right\}$ is said to be independent if for any finite subsequence $\left\{A_{j_{k}}\right\}$, we have

$$
P\left(\bigcap A_{j_{k}}\right)=\prod P\left(A_{j_{k}}\right) .
$$

(b) $\mathbf{2}$ marks will be given if one considered $\bigcup_{j=1}^{\infty} E_{j}^{c}=\left(\bigcap_{j=1}^{\infty} E_{j}\right)^{c} \cdot \mathbf{2}$ marks will be given to the correct use the independence of events. 2 marks will be given to the attempt of taking limit correctly. $\mathbf{2}$ marks will be given to showing that $\prod_{j=1}^{\infty} p_{j}=0$ with clear explanation.

Note that

$$
\bigcup_{j=1}^{\infty} E_{j}^{c}=\left(\bigcap_{j=1}^{\infty} E_{j}\right)^{c}
$$

Hence,

$$
P\left(\bigcup_{j=1}^{\infty} E_{j}^{c}\right)=1-P\left(\bigcap_{j=1}^{\infty} E_{j}\right)
$$

and it suffices to find the later term. By the continuity of probability,

$$
P\left(\bigcap_{j=1}^{\infty} E_{j}\right)=\lim _{n \rightarrow \infty} P\left(\bigcap_{j=1}^{n} E_{j}\right)
$$

Using the independence of the events,

$$
P\left(\bigcap_{j=1}^{n} E_{j}\right)=\prod_{j=1}^{n} p_{j} .
$$

Now, since $p_{j}<\frac{1}{2} \forall j \in \mathbb{N}$,

$$
0<\prod_{j=1}^{n} p_{j}<\left(\frac{1}{2}\right)^{n}
$$

The sandwich theorem shows that $\prod_{j=1}^{\infty} p_{j}$ exists and equals to 0 .
5. (a) Since A_{1}, A_{2}, A_{3} form a partition of $\Omega, E A_{1}, E A_{2}, E A_{3}$ form a partition of E. Recalling the definition of $P\left(E \mid A_{j}\right)$, then the finite additivity gives

$$
P(E)=\sum_{j=1}^{3} P\left(E A_{j}\right)=\sum_{j=1}^{3} P\left(E \mid A_{j}\right) P\left(A_{j}\right)
$$

(b) Using the notation as in the hint, $\mathbf{1}$ mark will be given for finding the correct values of $P\left(A_{1}\right), P\left(A_{2}\right), P\left(E \mid A_{1}\right), P\left(E \mid A_{2}\right)$ respectively; 2 marks will be given for finding the correct values of $P\left(E \mid A_{3}\right) ; \mathbf{1}$ mark will be given if one attempted to use the formula in (a) meaningfully; 1 mark will be given to the correct value of the answer; 5 marks will be given for calculating the answer using geometric sum directly correctly.

From counting, $P\left(A_{1}\right)=\frac{5}{36}, P\left(A_{2}\right)=\frac{3}{36}, P\left(E \mid A_{1}\right)=1, P\left(E \mid A_{2}\right)=0$, $P\left(E \mid A_{3}\right)=P(E)$. Putting all the values in the formula, $P(E)=\frac{5}{8}$.

