The Chinese University of Hong Kong
 Department of Mathematics

MMAT 5140 Probability Theory 2015-2016
Suggested Solution to Homework 6

1. P. 258, Q1 Note that

$$
P(X \leq t)= \begin{cases}t & \text { if } 0<t \leq 1 \\ 0 & \text { if } t \leq 0 \\ 1 & \text { if } t>1\end{cases}
$$

Note that $Y>0$ so it suffices to consider $Y \leq t$ for $t>0$. For $t>0$

$$
\begin{aligned}
P(Y \leq t) & =P\left(X \geq \frac{1}{t}\right) \\
& =1-P\left(X<\frac{1}{t}\right) \\
& =1-P\left(X \leq \frac{1}{t}\right) \quad(*) \\
& = \begin{cases}0 & \text { if } 0<t \leq 1 . \\
1-\frac{1}{t} & \text { if } t>1 .\end{cases}
\end{aligned}
$$

Hence,

$$
f_{Y}(t)= \begin{cases}0 & \text { if } t \leq 1 \\ \frac{1}{t^{2}} & \text { if } t>1\end{cases}
$$

(*) Note that

$$
P(X<t)=P\left(\bigcup_{q<t, q \in \mathbb{Q}}\{X \leq q\}\right)=P(X \leq t)
$$

since $P(X \leq t)$ is continuous in t.
2. P. 259, Q7

$$
\begin{aligned}
P(X \leq x) & = \begin{cases}0 & \text { if } x \leq 0 \\
\int_{0}^{x} 30 t^{2}(1-t)^{2} d t & \text { if } 0<x \leq 1 \\
1 & \text { if } x>1,\end{cases} \\
& = \begin{cases}0 & \text { if } x \leq 0 \\
10 x^{3}-15 x^{4}+6 x^{5} & \text { if } 0<x \leq 1, \\
1 & \text { if } x>1,\end{cases}
\end{aligned}
$$

Note that $Y \geq 0$ so it suffices to consider $Y \leq y$ for $y \geq 0$.

$$
\begin{aligned}
P(Y \leq y) & =P\left(X^{4} \leq y\right) \\
& =P\left(-y^{\frac{1}{4}} \leq X \leq y^{\frac{1}{4}}\right) \\
& =P\left(X \leq y^{\frac{1}{4}}\right) \\
& = \begin{cases}0 & \text { if } y \leq 0, \\
10 y^{\frac{3}{4}}-15 y+6 y^{\frac{5}{4}} & \text { if } 0<y \leq 1, \\
1 & \text { if } y>1,\end{cases} \\
f_{Y}(y) & = \begin{cases}\frac{15}{2} y^{-\frac{1}{4}}-15+\frac{15}{2} y^{\frac{1}{4}} & \text { if } 0<y \leq 1, \\
0 & \text { otherwise. }\end{cases} \\
& = \begin{cases}\frac{15}{2} y^{-\frac{1}{4}}\left(1-y^{\frac{1}{4}}\right)^{2} & \text { if } 0<y \leq 1, \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Note that you can define whatever value for f_{Y} at 0 because no matter what value one assign to this point, the distribution will never change since a single point has probability 0 .
3. P. 281, Q3 For $x \geq 0$,

$$
\begin{aligned}
P(|Z| \leq x) & =P(-x \leq Z \leq x) \\
& =P(Z \leq x)-P(Z<-x) \\
& =P(Z \leq x)-(1-P(Z \geq-x)) \\
& =P(Z \leq x)+P(Z \geq-x)-1 \\
& =2 P(Z \leq x)-1 \\
& =2 \phi(x)-1 .
\end{aligned}
$$

4. P. 281, Q7 Let $X \sim \mathcal{N}\left(67,8^{2}\right)$.
(a) $P(X \geq 90)=P\left(\mathcal{N}(0,1) \geq \frac{90-67}{8}\right)=P(\mathcal{N}(0,1) \geq 2.875)=1-$ $\Phi(2.875)$.
(b) $P(80 \leq X<90)=P(1.625 \leq \mathcal{N}(0,1)<2.875)=\Phi(2.875)-$ $\Phi(1.625)$.
(c) $P(70 \leq X<80)=P(0.375 \leq \mathcal{N}(0,1)<1.625)=\Phi(1.625)-$ $\Phi(0.375)$.
(d) $P(60 \leq X<70)=P(-0.875 \leq \mathcal{N}(0,1)<0.375)=\Phi(0.375)-$ $\Phi(-0.875)$.
(e) $P(X<60)=P(\mathcal{N}(0,1)<-0.875)=\Phi(-0.875)$.
