The Chinese University of Hong Kong
 Department of Mathematics

MMAT 5140 Probability Theory 2015-2016
Suggested Solution to Homework 2

1. P. 34 , Q3
(a) The statement is false. Consider an experiment which picks a person from a group consisting of women only. Clearly, the only possible outcome is that the person picked is a female and let such event be A. Let Ω be the sample space, then $\Omega=\{A\}$ and hence $\Omega \neq A$.
(b) This statement is also false. Consider picking a real number randomly from 0 to 1 , that is, for $0 \leq t \leq t$,

$$
P(0 \leq x \leq t)=t
$$

Let B be the event that $x=1$, then $P(B)=0$ but $B \neq \emptyset$.
2. P. 34, Q9 Clearly, $\frac{1}{2} \in\left(\frac{1}{2}-\frac{1}{2 n}, \frac{1}{2}+\frac{1}{2 n}\right)$ for all $n \in \mathbb{N}$. We need to show that any real number x such that $\left|x-\frac{1}{2}\right|>0$ is not contained in the intersection, that is, $\frac{1}{2}$ is the only element in the intersection. Let such a real number be given, then there exists an $\varepsilon>0$ (depending on the given number x) such that $\left|x-\frac{1}{2}\right|>\varepsilon$. Note that for such a fixed ε, we can find an N such that $\frac{1}{2 N}<\varepsilon$. Hence, $x \notin\left(\frac{1}{2}-\frac{1}{2 N}, \frac{1}{2}+\frac{1}{2 N}\right)$ and the intersection contains $\frac{1}{2}$ as the only element.
3. P. 122, Q32
(a)

$$
\begin{aligned}
& P(\text { at least one head in the first } n \text { flips }) \\
& =1-P(\text { no head in the first } n \text { flips }) \\
& =1-\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

(b) From the definition of Combinations, we have

$$
P(\text { exactly } k \text { heads in the first } n \text { flips })=C_{k}^{n}\left(\frac{1}{2}\right)^{k}
$$

(c)

$$
\begin{aligned}
& P(\text { getting all heads indefinitely }) \\
& =\lim _{n \rightarrow \infty} P(\text { getting all heads in the first } n \text { flips) } \\
& =\lim _{n \rightarrow \infty}\left(\frac{1}{2}\right)^{n} \\
& =0
\end{aligned}
$$

