The Chinese University of Hong Kong
Department of Mathematics

MMAT 5140 Probability Theory 2015-2016
Suggested Solution to Homework 1

1. P. $34, \mathrm{Q} 4$

$$
\begin{aligned}
P(A \bigcap B) & =1-P\left((A \bigcap B)^{c}\right) \\
& =1-P\left(A^{c} \bigcup B^{c}\right) \\
& =1-\left(P\left(A^{c}\right)+P\left(B^{c}\right)-P\left(A^{c} \bigcap B^{c}\right)\right) \\
& =1-(0+0-0) \\
& =1
\end{aligned}
$$

2. P. 34, Q8 We prove it by Mathematical Induction. Let S_{n} be the statement for $n \geq 1$ and the statement is clearly true for $n=1$. Suppose S_{k} is true, then we need to prove that S_{k+1} is true. Since S_{k} is true, we have $P\left(\cap_{i=1}^{k} A_{i}\right)=1$. Setting $A=\cap_{i=1}^{k} A_{i}$ and $B=A_{k+1}$ in the last question, we have $P\left(\cap_{i=1}^{k+1} A_{i}\right)=1$. Hence, S_{k+1} is true and the result follows from the principle of Mathematical Induction.
3. P.35, Q13 We show it by providing a counterexample. Let x be a real number randomly drawn from 0 to 1 , that is, for $0 \leq t \leq 1$,

$$
P(0 \leq x \leq t)=t
$$

Let E_{t} be the event that $x \neq t$, then $P\left(E_{t}\right)=1$ for all $t \in[0,1]$. To see that, for $\varepsilon>0$, we have

$$
\begin{aligned}
P(x \neq t) & \leq P(t<x \leq t+\varepsilon) \\
& =P(0 \leq x \leq t+\varepsilon)-P(0 \leq x \leq t) \\
& =\varepsilon
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we must have $P\left(E_{t}\right)=1$. However, it is clear that we must have $x \in(0,1)$ by definition and so

$$
P\left(\bigcap_{t \in(0,1)} E_{t}\right)=P(x \notin(0,1))=0
$$

