The Chinese University of Hong Kong Department of Mathematics

MMAT 5140 Probability Theory 2015 - 2016 Suggested Solution to Homework 1

1. P. 34, Q4

$$P\left(A \bigcap B\right) = 1 - P\left(\left(A \bigcap B\right)^{c}\right)$$
$$= 1 - P\left(A^{c} \bigcup B^{c}\right)$$
$$= 1 - \left(P(A^{c}) + P(B^{c}) - P\left(A^{c} \bigcap B^{c}\right)\right)$$
$$= 1 - (0 + 0 - 0)$$
$$= 1$$

- 2. P. 34, Q8 We prove it by Mathematical Induction. Let S_n be the statement for $n \ge 1$ and the statement is clearly true for n = 1. Suppose S_k is true, then we need to prove that S_{k+1} is true. Since S_k is true, we have $P(\bigcap_{i=1}^k A_i) = 1$. Setting $A = \bigcap_{i=1}^k A_i$ and $B = A_{k+1}$ in the last question, we have $P(\bigcap_{i=1}^{k+1} A_i) = 1$. Hence, S_{k+1} is true and the result follows from the principle of Mathematical Induction.
- 3. P.35, Q13 We show it by providing a counterexample. Let x be a real number randomly drawn from 0 to 1, that is, for $0 \le t \le 1$,

$$P(0 \le x \le t) = t.$$

Let E_t be the event that $x \neq t$, then $P(E_t) = 1$ for all $t \in [0, 1]$. To see that, for $\varepsilon > 0$, we have

$$P(x \neq t) \le P(t < x \le t + \varepsilon)$$

= $P(0 \le x \le t + \varepsilon) - P(0 \le x \le t)$
= ε .

Since $\varepsilon > 0$ is arbitrary, we must have $P(E_t) = 1$. However, it is clear that we must have $x \in (0, 1)$ by definition and so

$$P\left(\bigcap_{t\in(0,1)}E_t\right) = P(x\notin(0,1)) = 0$$