Department of Mathematics The Chinese University of Hong Kong

MAT5061 Riemannian Geometry I Final Examination

Apr 20, 2015

Answer all questions and show all your steps in detail.

- (1) (20 marks)
 - (a) Define Levi-Civita connection (Riemannian connection) on a Riemannian manifold with metric $g = \langle \cdot, \cdot \rangle$.
 - (b) Proof the existence and uniqueness of Levi-Civita connection.
- (2) (20 marks) Consider the Riemannian manifold defined by $M = (R_+^2, \frac{dx^2+dy^2}{y^2})$, where $R_+^2 = \{(x, y) \in \mathbb{R}^2 : y > 0\}.$
 - (a) Find all the Christoffel symbols of the Levi-Civita connection.
 - (b) Let $v_0 = (0, 1)$ be considered as a tangent vector in $T_{(0,1)}M$ and v(t) be the parallel transport of v_0 along the curve $\gamma(t) = (t, 1), -\infty < t < +\infty$. Show that v(t) makes an angle t with the y-direction, measured in the **Euclidean and clockwise** sense.
- (3) (20 marks)
 - (a) Let $\mathbb{S}^2 \times \mathbb{S}^2$ be the submanifold of \mathbb{R}^6 defined by
 - $\{(x_1, x_2, x_3, y_1, y_2, y_3) : x_1^2 + x_2^2 + x_3^2 = y_1^2 + y_2^2 + y_3^2 = 1\}.$

Prove that the sectional curvature of the Riemannian manifold $\mathbb{S}^2 \times \mathbb{S}^2$ with induced metric is non-negative.

(b) Find a totally geodesic flat torus embedded in $\mathbb{S}^2 \times \mathbb{S}^2$.

- (4) (20 marks) Let $\gamma : [0, b] \to M$ be a normalized geodesic with $\gamma(0) = x$ and $\gamma'(0) = v$. Suppose that J is the Jacobi field along γ such that J(0) = 0 and J'(0) = w with |w| = 1 and $\langle w, v \rangle = 0$. Find, in terms of the sectional curvature $K(\pi)$ of the 2-plane section π generated by v and w at x, the Taylor expansion of $|J(t)|^2$ about t = 0 up to order 4.
- (5) (20 marks) Suppose that M is a Riemannian manifold.
 - (a) Show that for any x ∈ M, the differential (d exp_x)₀ of exp_x at the origin can be identified as the identity map of the tangent space T_xM.
 - (b) Using (a), show that for any $x \in M$, there exists a neighborhood U of x and a number $\delta > 0$ such that, for any $y \in U$, the restriction $\exp_y|_{B(\delta)}$ of \exp_y on the open δ -ball centered at the origin $B(\delta) \subset T_yM$ is a diffeomorphism.

(End)

2