Lect16-0315-Quotient more

7. Mobins strip or band $[0,1] \times [0,1] / where (s_1, s_2) \sim (t_1, t_2)$ if $(s_1, s_2) = (t_1, t_2)$ or $\begin{cases} |s_1 - t_1| = 0, 1 \\ s_2 = 1 - t_2 \end{cases}$ For simplicity, often say identify (0,t) with (1,1-t) on $[0,1]^2$ 8. Klein Bottle Identify (S,0) with (S,1) and (0, t) with (1, 1-t) on $[0, 1]^2$ Note. Klein Bottle of R3 But basic neighborhoods of any point homed. $\int z \in \mathbb{C} : |z| < 1$ 9. Projective Plane, TRP² Identify (S, U) with (1-S, 1) and (0,t) with (1, 1-t) on $[0,1]^2$ OR Identify Z with -Z if |Z|=1 on $\{ \overline{z} \in \mathbb{C} : |\overline{z}| \leq 1 \}$ Exercise. Show they are homeomorphic.

Given (X, J_X) and \sim on X q: X onto X/~ or any Q $J_q = \{ V \subset X/_{\sim} \text{ or } Q : g'(V) \in J_X \}$ $q: (X, J_X) \longrightarrow (X_n \text{ or } Q, J_q)$ is continuous QT1 Obvions, because if VEJZ, by definition, q'(V) & JX QT2 Jg is the maximal topology on X/2 or Q to make g: (X, Jx) -> X~ or Q cts. Suppose $q:(X,J_X) \longrightarrow (Y_{\sim},J')$ is continuous Let $V \in J'$, Then $q'(V) \in J_X$ By def, V ∈ Jq. ... J'⊂ Jq QT3 f: X/~ or Q ~~>Z is continuous fog=X → Z is continuous \Leftrightarrow "⇒" Trivial "=" Easy. Basically (fog)" = g'of" QT4 Jg is the minimal topology on X/2 or Q to make QT3 true. Exercise.

Disjoint Union
Put two copies of X together
$$\neq$$
 XUX
Define XUX = (Xx803) U (Xx813)
A useful example
Let X = [-1,1] L [-1,1]
Identify (X,0) with (X,1) if $x \neq 0$
Picture $o \neq (0,1)$
Picture $o \neq (0,1)$
Picture $o \neq (0,0)$ a (0,1) intersect!
ON. Is X/~ Hansdorff?
Any nbhds of (0,0) & (0,1) intersect!
Sphere
Given $D^2 = \{ \overline{z} \in \mathbb{C} : |\overline{z}| \leq 1 \} \subset \mathbb{R}^2$, standard
1. Identify $S' = \{ \overline{z} \in \mathbb{C} : |\overline{z}| = 1 \}$ to one point
i.e. $\overline{z} \sim W$ if $|\overline{z}| = |W| = 1$
2. Identify $e^{i\theta}$ with $e^{-i\theta}$ for all θ
 $e^{i\theta}$
 $e^{i\theta}$

Attaching Space Given X, Y; ACX; f: A -> Y Define XUIT by (XLIT)/~ where (a, 0) is identified with (fa), 1), a f A Usually, we say: Attach X to Y along A by f (i) $X = D^2 = Y$, A = S', $f = id: S' \longrightarrow S'$ $XU_{f}T = S^{2}$, just like N-S hemisphere (ii) $X = D^2 = Y$, A = S', $f(e^{i\theta}) = e^{i(\theta + \alpha)}$ $XU_{f}Y = S^{2}$ (iii) $X = D^{t} = Y$, $A = S^{t}$ $f(e^{i\theta}) = e^{2i\theta}$ XUfY is not a surface (iv) $X = D^2 = T$, A = S'- - $f(e^{i\theta}) = f(e^{i\theta})$

Handle Body
(i)
$$X = S^{2} \setminus (D_{1} \cup D_{2})$$
 where $D_{1} = D_{2} = D^{2}$
 $Y = S^{1} \times [0, 1]$
 $A = \partial X = S_{1} \cup S_{2}$ where $S_{1} = S_{2} = S^{1}$
Note that $\partial T = S^{1} \times 10^{2} \cup S^{1} \times 10^{2}$
Let $f : A \longrightarrow \partial T$
be a homeomorphism
Then $X \cup_{f} Y = Torms$
Usual say,
Attach a handle to a sphere
(ii) Attach two handles to a sphere
II
Attach a handle to a torms
 $Q = Q = Q = Q$
II

Projective Plane
$$\mathbb{RP}^2$$

1. Identify $(s,0) \sim (1-s,1)$ and $(0,t) \sim (1,1-t)$
on $[0,1] \times [0,1]$
2. Idenify $e^{i\theta} \sim -e^{i\theta}$ on $D^2 = \{12|s+1\}$
3. Let $X = \mathbb{R}^3 \setminus 50^{t}$ and $x \sim y$ if
 $\exists \lambda \neq 0$ such that $x = \lambda y$
i.e. $x, y, 0$ are on a straight line
 X/\sim becomes the space of lines in \mathbb{R}^3
4. Let $S^2 = \{U \in \mathbb{R}^3 : \|U\| = 1\}$
Then $U, -U$ are called antipodal points
In fact, $U, 0, -U$ form a diameter
Fact. $S^2 / antipodal = \mathbb{R}^3 \setminus 50^{t} / st$. lines
 $[U] \longrightarrow [U]$
 $[X_{U}] \leftarrow I$ $[X]$
Exercise. Show that it is a homeomorphisn

In
$$O_3/O_2$$
, $A \cdot O_2 = B \cdot O_2$ if $A^{\dagger}B \in O_2$
In other words, $A \sim B$ on O_3 if $A^{\dagger}B \in O_2$
i.e. $A^{\dagger}B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & Q \\ 0 \end{bmatrix}$ where $Q \in O_3$
Thus, $A^{\dagger}B(e_1) = e_1$ or $A(e_1) = B(e_1)$
Also, $A^{\dagger}B|_{0\times\mathbb{R}^2} : 0\times\mathbb{R}^2 \longrightarrow 0\times\mathbb{R}^2$
is an isometry (given by Q)
Anyway, $O_3/O_2 \longrightarrow S^2$ by
 $A \cdot O_2 \longmapsto A(e_1)$ is well-defined
Exercise. This is a homeomorphism
Now, denote $\pm O_2 = \{\begin{bmatrix} \pm 1 & 0 & 0 \\ 0 & Q \end{bmatrix} : Q \in O_2 \}$
Then, only difference, if $A \sim B$
then $A(e_1) = \pm B(e_1)$
And $O_3/\pm O_2 \longrightarrow \mathbb{R} \mathbb{P}^2$
 $A \cdot (\pm O_2) \longmapsto [\pm A(e_1)]$
Projective Space $\mathbb{R}\mathbb{P}^n = \mathbb{O}\mathbb{P}^n/\pm \mathbb{O}n$
"n-dim spaces in \mathbb{R}^{n+1} "