Lect08-0216-Convergence

Thursday, February 18, 2016

2:52 PM

Recall two logical statements

Continuity of f at xo

V V e Jy with fix) e V, ∃ U e Jx, x e U
U ⊂ f'(V), i.e, fU) ⊂ V

A chuster point xo of A

(V U & J) with x & EU, UnA \ [x] + p

The Jy or Jx can be replaced by bases In fact, local bases at f(xo) or xo.

In the cases of metric space, can be $\forall \ 1 \leq n \in \mathbb{Z}$ $B_{\gamma}(f(x_0), \frac{1}{n})$ or $B_{\chi}(x_0, \frac{1}{n})$

Example. Chister point in metric space

YIENEZ BLXO, T) NA VIXO + \$

= ane B(xo, in), aneA, an= xo

We actually have a situation:

local base Ux = { B(x, +): 1 \in \all }

 $U_1 \supset U_2 \supset U_3 \supset U_3 \supset U_1 \supset U_1 \supset U_2 \supset U_2 \supset U_1 \supset U_2 \supset U_2$

 α_1 α_2 α_3 \cdots α_n

Ynzn, ane UN

This is the setting of convergence of a sequence

Remark. "Y TEI with XET" can be replaced by
"Y TEUx, Ux a Local bone at x"

Proposition. Limit of a sequence is unique if the space X is Hausdorff.

Proof. It is very similar to the case of \mathbb{R}^n or metric space. Assume $x_n \to x$, $x_n \to y$ and $x \neq y$.

By Hansdorff, FU, VEJ, XEV, YEV and UnV = x

By xn→x, for U∈J, ∃N, ∈N, ∀n≥N, Qn∈U By xn→y, for V∈J, ∃Nz∈N, ∀n≥Nz, Qn∈V

Take $N = \max\{N_1, N_2\}$ They $a_N \in U \cap V = \phi$ contradiction

Proposition. If a sequence $x_n \in A \longrightarrow x \in X$ then $x \in \overline{A}$

Apparently, there is no analogue of this result in Mothemodical Analysis.

Proof. To conclude $x \in \overline{A}$, take any $U \in J$ and $x \in U$

Then by $x_n \rightarrow x$, \exists integer NEN such that $\forall n > N$ $x_n \in U$. In particular $x_N \in U$. Since $x_N \in A$ is given, $x_N \in U \cap A \neq \emptyset$.

Qu. What if A is closed? What implication?

Corollary. Any convergence sequence in a closed set has its limit in the set also.

Now, recall that $x_n \in [a,b]$ converges inside [a,b],

Qu. What about the converse of the proposition? How should we write the converse?

Converse. If $x \in A$ then \exists sequence $an \in A$, $an \rightarrow x$.

The converse may not be true in general.

Exercise. Show that the converse is true if X is 1st countable.

Qu. What can be say XEA? Can it be described by distinct sequence?

On How limit of sequence relates to continuity? $\lim_{n \to \infty} f(x_n) = f(\lim_{n \to \infty} x_n)$ Proposition. Let $f:X \longrightarrow Y$ and $x \in X$.

If f is continuous at x then

 \forall sequence $x_n \rightarrow x$ in X, $f(x_n) \rightarrow f(x)$ in Y.

Qu. What is the converse?

Is the converse true if X=Rⁿ? Yes

Is the converse true for general X? No

Proof. For f(xn) -> f(x), take any V& Jy, fix) &V

Then $f'(V) \in J_X$, $x \in f'(V)$, on f is continuous

Since xn -x, I NEW Y n>N xnef(V)

Hence f(xn) EV

It is proved that $f(x_n) \longrightarrow f(x)$.