Lect06-0128-Continuity

Monday, February 1, 2016

For the mapping
$$f:(X,J_X) \longrightarrow (Y,J_Y)$$
.

To the mapping $f:(X,J_X) \longrightarrow (Y,J_Y)$.

To the mapping $f:(X,J_X) \longrightarrow (Y,J_Y)$.

To the mapping $f:(X,J_X) \longrightarrow (Y,J_Y)$.

The second set to if

 $f(X) = J_X$ with $f(X_0) \in J_X$.

The second s

This shows that continuity is not only about the wapping, it is about the topologies.

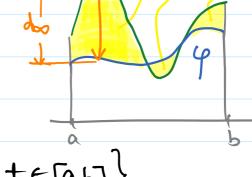
Example

There may be different topologies on X

$$OL_1$$
-topology J_1 determined by the metric $d_1(\varphi, \psi) = \int_a^b |\varphi(t) - \psi(t)| dt$

It is measuring the 'area' between the functions

D Uniform Topology Joo determined by



$$d_{0}(\varphi, \psi)$$
= $snp\{|\varphi(t)-\psi(t)|: t \in [a,b]\}$

3 id: $(X, J_0) \longrightarrow (X, J_1)$ is continuous Given any $\varepsilon > 0$ and any $\varphi \in X$ Take $\delta = \frac{\varepsilon}{b-a}$. Then for $\psi \in X$

satisfying $d_{\infty}(\psi, \varphi) < \delta = \frac{\varepsilon}{b-a}$

$$d_1(\psi, \psi) = \int_a^b |\psi(t) - \psi(t)| dt < \frac{\varepsilon}{6-a} \int_a^b dt = \varepsilon$$

\P Bad Situation id: $(X, J_i) \longrightarrow (X, J_o)$ is not continuous

I $\mathcal{E}=1$ such that $\frac{1}{4}$ and $\frac{1}{4}$ $\frac{1}{4}$

In terms of open sets, let
$$V = \{ \psi \in X : d_{\infty}(\psi, \varphi) < 1 \} \in J_{\infty}$$
For any $U \in J_{1}$ with $\psi \in U$, we can insert a base set,
$$B_{n} = \{ \psi \in X : d_{1}(\psi, \varphi) < \frac{1}{n} \} \quad i.e.$$

$$\psi \in B_{n} \subset U$$

Also, we can construct $\forall n \in B_n$ but $id(\forall n) = \forall n \notin V$ $\forall n \in B_n$ $id(\forall n) = \forall n \notin V$ $\forall n \in B_n$ $id(\forall n) = \forall n \notin V$ $\forall n \in B_n$ $id(\forall n) = \forall n \notin V$ $\forall n \in B_n$ $id(\forall n) = \forall n \notin V$ $\forall n \in B_n$ $id(\forall n) = \forall n \notin V$ $\forall n \in B_n$ $id(\forall n) = \forall n \notin V$ $\forall n \in B_n$ $id(\forall n) = \forall n \notin V$ $id(\forall n) = \forall n \in V$ i

Theorem. The following statements are equivalent.

at $x \in X \ \forall x$.

(2) $\forall V \in J_Y$, $f'(V) \in J_X$ known f Exercise

(3) $\forall B \in B_Y$, $f'(V) \in J_X$ trivial f Obvious

(4) $\forall A \subset X$, $f(A) \subset f(A)$ (5) Elementary

(5) \rightarrow BCY, \(\frac{f'(8)}{(B)} \sigma \text{Elementary}\)

6 & closed HCY, fi(H) is closed in X

3 → 2 Let V∈Jy Then V= UBa, Ba∈By 1, (A) = 1, (Bx) = 1, (Bx)

each in Jy

② ⇔ 6 Take complement

 $\textcircled{3} \Rightarrow \textcircled{5}$ Take B = f(A) Exercises $\textcircled{5} \Rightarrow \textcircled{6}$ Take $H = B = \overline{B}$

Obviens