Lectos-0126-Countability
Two ways of describing a base B of
$$(X,J)$$

* Any G $\in J$ can be expressed as
 $G = \bigcup_{a \in E} B_a$ where $B_a \in B$
* $\forall G \in J$ and $x \in G = J B \in B$ such that
 $x \in B \subseteq G$
A local base U_X at the point $x \in X$ satisfies
 \forall neighborhood N of x (i.e., $x \in N$)
 $= J \cup \in U_X$ such that $x \in J \subseteq U \subseteq N$
Note Some may require N, $\bigcup \in J$
Both involve inserting an open set between
 a point $x \in X$ and an antitionary set.
Example in (\mathbb{R}^n, J_{Std}) .
 $B_1 = \{B(x, r) : x \in \mathbb{P}^n, r > 0\}$ is a base
 $It Contains many many sets$
 $= \bigcup_{x \in \mathbb{R}} \{B(x, r) : r > 0\}$
 $A local base U_x at a fixed $x \in X$
 $B_2 = \{B(q, h) : g \in Q, i \le n \in \mathbb{Z}\}$ is
 $a bos a base; it is countable$$

Wednesday, January 27, 2016 4:04 PM

Qu. For 132, what is the corresponding local base for a fixed XERNOn? Now, one cannot use x as the center! Given N B(x,r) When ||q-x|| < S $g \in \mathbb{Q}$ $x \in B(q, \pi) \subset \mathbb{N}$ The argument needs * I sequence 2 > x in R * Δ -inequality $B(g, \pi) \subset B(x, r)$ Qu. What is the relation between a bare B and a local bace "In at a point x EX? * US is indeed a local base for each XEX. * If we have local base Ux at every XEX, thin B= U 1/2 is a base Definition A topological space (X,J) is (i) 2nd countable GI if it has a countable base (ii) 1st countable G if there is a countable local base at every XEX. (iii) Will define later.

Thursday, January 28, 2016 2:37 PM

Fact: Obvions, $G_{I} \Rightarrow G_{I}$ Should expect As mention, if we have local base Ux B = U Ux is a base may be uncountable In (Rⁿ, Jstd), we may use gEQⁿ instead and every x E R can countable be approximated by gr & Q ~ x Definition. A set DCX is dense if D=X On Recall the Logical statement for XED i.e. V JEJ with xeV, UnD=\$ J J d E D and d E U If D=X then becomes for all xEX Thus $D = X \iff \forall \phi \neq G \in J, G \cap D \neq \phi$ Definition (iii) A topological space (X, J) is separable if it has a countable dense set. The obvious example is R has Q Expectation. (I #> sepanable occurs at a condition XEX over the whole X

Thursday, January 28, 2016 2:57 PM

Theorem. (I => separable Let B={B; : jEIN } be a countable bou we need to construct a countable dense D No other idea, so just pick x; EB; and form D={xj: jEN} Let GEJ with G=\$, so G is a union of sets in B, namely, G= UBjk Then cleanly, Bj*EGnD. From this fact, we see that a base B indeed contains a lot of sets. Just take one point from each will form a dense set. Appanently, if we have a dense set D and each print has a local base Mr, then one may try to make UN. Expect. G_{+} separable $\Rightarrow G_{I}$ X not true however Qu. What makes the case of R work? (i) Qⁿ, sepanable (ii) metric — GI Δ-inequality

Thursday, January 28, 2016 Example. Lower Limit topology on R j is generated by splus [a,b): a < b f R { * It is Obviously GI. Why? At every XER, take $\mathcal{M}_{\mathbf{x}} = \left\{ [\mathbf{x}, \mathbf{x} + \frac{1}{n}] : 1 \le n \le \mathbb{Z} \right\}$ * It is also sepanable. Explain why Q is a dense subject in this topology. * G= { p, R } U { [p, g) = p < g < Q } is not a base. With some similar argument, one may rigorously show that this topology is not CII. Just consider XERIQ and [x, x+E]. (an we insert a subset Lpg), i.e., $x \in [p, g] \subset [x, x \in E]$ Obviously, due to XEQ and PEQ, $x \in [p, q] \implies x \notin p$ $[p,q) \subset [x, x+\varepsilon) \Rightarrow p \neq x$

Monday, February 1, 2016 9:53 AM

Continuity of a mapping $f:(X,J_X)\longrightarrow(Y,J_Y)$ is a property that respects/preserves the topological structure. Let us consider the special case when (X, Jx) and (Y, Jy) are metric spaces or, in ponticular X=R, T=R^m. Let XoEX, f(Xo) ET. Recall that f is continuous at the if V E>0 J S>0 such that if ||x-x_1<5 then ||-f(x)-f(x_0)||< 8 if $x \in B_X(x_0, \delta)$ then $f(x) \in B_{\zeta}(f(x_0), \delta)$ $-\int (B_X(x_0, \delta)) \subset B_Y(-f(x_0), \delta)$ ×. $\mathbb{B}_{X}(x_{0}, S) \subset \overline{f}(\mathbb{B}_{Y}(fix_{0}, S))$ Or

Monday, February 1, 2016 10:08 AM

To get rid of metric (or hall), we replace Bx(x0,8) by UEJx with x0EU and By (fixer, E) by VEJy with foxeV

A mapping $f: (X, J_X) \longrightarrow (Y, J_Y)$ is continuous at xo if VVeJy with f(x.)eV -J VEJX with XOEV such that f(v) CV i.e. v Cf (V)

Also, it is continuous everywhere if the above is true for all XoEX. Equivalently, VVE), J'(V) EJX. A xef(V)] JEJx such that $x \in V \in f'(V)$