THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2015–2016) Introduction to Topology Exercise 0 Preparation

Remarks

These exercises may give you an impression of the foundation needed in this course.

- 1. Write down precise and concise statements of the following.
 - (a) The definition of the continuity of a function $f: X \subset \mathbb{R} \to \mathbb{R}$ at a point $x_0 \in X$.
 - (b) The definition of the limit of a function $f: X \subset \mathbb{R} \to \mathbb{R}$ as $x \to x_0 \in X$.
 - (c) The relation between the continuity of a function $f: X \subset \mathbb{R} \to \mathbb{R}$ at $x_0 \in X$ and a sequence $x_n \to x_0 \in X$.
 - (d) The definition of supremum and infinum of a set $A \subset \mathbb{R}$.
 - (e) The definition of supremum and infinum of a subset A in a partially ordered set X.
- 2. Let $f: X \to Y$ and $g: Y \to Z; A \subset X, B \subset Y$; if needed, $f(A) \subset B$. Determine the correctness of the following statements. Justify with proofs or counter-examples.
 - (a) $f(A_1 \cap A_2) = f(A_1) \cap f(A_2)$
 - (b) if $B_1 \subset B_2$ then $f^{-1}(B_1) \subset f^{-1}(B_2)$
 - (c) if $A_1 \subset A_2$ then $f(A_2 * A_1) = f(A_2) * f(A_1)$ where $* \text{ may be } \cup, \cap, \setminus \text{ (set minus), or} \land \text{ (symmetric difference).}$
- 3. Define a relation ~ on \mathbb{R}^2 by $(x_1, y_1) \sim (x_2, y_2)$ if $x_1^2 y_1^2 = x_2^2 y_2^2$. Show that this is an equivalence relation. What are its equivalence classes?
- 4. Define a family of sets X_{α} for $\alpha \in A$ (A may be infinite). Then define the arbitrary product $\prod_{\alpha \in A} X_{\alpha}$.

If there are functions $f_{\alpha}: X_{\alpha} \to Y$, is it possible to define a function $f: \prod_{\alpha \in A} X_{\alpha} \to Y$? On the other hands, if there are functions $g_{\alpha}: U \to X_{\alpha}$, is it possible to define a function $g: U \to \prod_{\alpha \in A} X_{\alpha}$?

- 5. Let $A_{\alpha} \subset X$ where $\alpha \in A$. Define $\bigcup_{\alpha \in A} A_{\alpha}$ and $\bigcap_{\alpha \in A} A_{\alpha}$. For $B \subset A$, what is the meaning of $\bigcup \{A_{\alpha} : \alpha \in B\}$? What is the meaning of all arbitrary unions of sets in $\{A_{\alpha} : \alpha \in A\}$?
- 6. What is a countable or uncountable set? State some propositions about countability between a set and its image under a function.
- 7. What are the basic requirements of an algebraic group?