Homework. Due: Nov. 242015

November 19, 2015

Page: 237-238, Q 1-4

Q1 Find the residue at $z=0$ of the function
a $\frac{1}{z+z^{2}}$;
b $z \cos \left(\frac{1}{z}\right)$;
c $\frac{z-\sin z}{z}$;
d $\frac{\cot z}{z^{4}}$;
e $\frac{\sinh z}{z^{4}\left(1-z^{2}\right)}$
Ans. a. 1, b. $-1 / 2$; c. $0 ; d .-1 / 45$; e. $7 / 6$.
Q2 Use Cauchy's residue theorem(Sec.76) to evaluate the integral of each of these functions around the circle $|z|=3$ in the positive sense:
a $\frac{\exp (-z)}{z^{2}}$;
b $\frac{\exp (-z)}{(z-1)^{2}}$;
c $z^{2} \exp \left(\frac{1}{z}\right)$;
d $\frac{z+1}{z^{2}-2 z}$
Ans. a. $-2 \pi i ; b .-2 \pi i / e ; c . \pi i / 3 ; d .2 \pi i$.
Q3 In the example in Sec. 76, two residues were used to evaluate the integral

$$
\int_{C} \frac{4 z-5}{z(z-1)} d z
$$

where C is the positively oriented circle $|z|=2$. Evaluate this integral once again by using the theorem in Sec. 77 and finding only one residue.

Q4 Use the theorem in Sec. 77, involving a single residue, to evaluate the integral of each of these functions around the circle $|z|=2$ in the positive sense:
a $\frac{z^{5}}{1-z^{3}} ;$
b $\frac{1}{1+z^{2}}$;
c $\frac{1}{z}$.
Ans. a. $-2 \pi i$; b. 0; c. $2 \pi i$.

Page: 242, Q 1-3

Q1 In each case, write the principal part of the function at its isolated singular point and determine whether that point is a removable singular point, an essential singular point, or a pole:
a $z \exp \left(\frac{1}{z}\right)$;
b $\frac{z^{2}}{1+z}$;
c $\frac{\sin z}{z}$;
d $\frac{\cos z}{z}$;
$\mathrm{e} \frac{1}{(2-z)^{3}}$.
Q2 Show that the singular point of each of the following functions is a pole. Determine the order m of that pole and the corresponding residue B.
a $\frac{1-\cosh z}{z^{3}} ;$
b $\frac{1-\exp (2 z)}{z^{4}} ;$
c $\frac{\exp (2 z)}{(z-1)^{2}}$.
Ans. a. $m=1, B=-1 / 2$; b. $m=3, B=-4 / 3$; c. $m=2, B=2 e^{2}$.
Q3 Suppose that a function f is analytic at z_{0}, and write $g(z)=f(z) /(z-$ z_{0}). Show that
a if $f\left(z_{0}\right) \neq 0$, then z_{0} is a simple pole of g, with residue $f\left(z_{0}\right)$;
b if $f\left(z_{0}\right)=0$, then z_{0} is a removable singular point of g.
suggestion: As pointed out in Sec. 62 , there is a Taylor series for $f(z)$ about z_{0} since f is analytic there. Start each part of this exercise by writing out a few terms of that series.

Page: 264-265, Q 2, 4, 9 Use residues to derive the integration formulas in Q2 and Q4

Q2

$$
\int_{0}^{\infty} \frac{d x}{\left(x^{2}+1\right)^{2}}=\frac{\pi}{4}
$$

Q4

$$
\int_{0}^{\infty} \frac{x^{2} d x}{x^{6}+1}=\frac{\pi}{6}
$$

Q9 Use a residue and the contour which is the boundary of the sector $0 \leq$ $r \leq R, 0 \leq \theta \leq 2 \pi / 3$ and counter-clockwise oriented, where $R>1$, to establish the integration formula

$$
\int_{0}^{\infty} \frac{d x}{x^{3}+1}=\frac{2 \pi}{3 \sqrt{3}}
$$

Page: 273, Q 3, 5, 8, 12
Use residues to derive the integration formulas in Q3 and Q5.
Q3

$$
\int_{0}^{\infty} \frac{\cos a x}{\left(x^{2}+b^{2}\right)^{2}} d x=\frac{\pi}{4 b^{3}}(1+a b) e^{-a b}(a>0, b>0) .
$$

Q5

$$
\int_{-\infty}^{\infty} \frac{x^{3} \sin a x}{x^{4}+4} d x=\pi e^{-a} \cos a \quad(a>0) .
$$

Use residues to find the Cauchy principal values of the improper integrals in Q8.

Q8

$$
\int_{-\infty}^{\infty} \frac{\sin x d x}{x^{2}+4 x+5}
$$

Ans. $-\frac{\pi}{e} \sin 2$.
Q12Follow the steps below to evaluate the Fresnel integrals, which are important in diffraction theory:

$$
\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\frac{1}{2} \sqrt{\frac{\pi}{2}} .
$$

a By integrating the function $\exp \left(i z^{2}\right)$ around the positively oriented boundary of the sector $0 \leq r \leq R, 0 \leq \theta \leq \pi / 4$ and appealing to the CauchyGoursat theorem, show that

$$
\int_{0}^{R} \cos \left(x^{2}\right) d x=\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-R e \int_{C_{R}} e^{i z^{2}} d z
$$

and

$$
\int_{0}^{R} \sin \left(x^{2}\right) d x=\frac{1}{\sqrt{2}} \int_{0}^{R} e^{-r^{2}} d r-\operatorname{Im} \int_{C_{R}} e^{i z^{2}} d z
$$

where C_{R} is the arc $z=\operatorname{Re}^{i \theta}(0 \leq \theta \leq \pi / 4)$.
b Show that the value of the integral along the $\operatorname{arc} C_{R}$ in part a tends to zero as R tends to infinity by obtaining the inequality

$$
\left|\int_{C_{R}} e^{i z^{2}} d z\right| \leq \frac{R}{2} \int_{0}^{\pi / 2} e^{-R^{2} \sin \phi} d \phi
$$

and then referring to the form (2), Sec. 88, of Jordan's inequality.
c Use the results in part a and b, together with the known integration formula

$$
\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}
$$

to complete the exercise.

