THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2230A (First term, 2015-2016)
 Complex Variables and Applications
 Notes 18 More Real Integrals

18.1 Integrands having Branches

As we know, there is a new concept about functions in complex, that is, the concept of branches. A real function which has clear definition may become a function with branches in complex. Typical examples are $\ln x$ or x^{r} where $r \in \mathbb{R}$. This creates some troubles, but surprising also benefits.

18.1.1 Choose an Indented Contour

Example 18.1. To evaluate $\int_{0}^{\infty} \frac{\ln x d x}{\left(x^{2}+4\right)^{2}}$. The natural complex function to consider is

$$
f(z)=\frac{\text { A branch of } \log z}{\left(z^{2}+4\right)^{2}} .
$$

Which branch of $\log z$ should we choose? Although there are many choices, we still need to choose it carefully. Of course, we would like to choose a convenient one to simplify the calculation. However, the choice must be compatible with the contour. Here are the key points.

- First, $\ln (x)$ and any branch of $\log z$ are not defined at the origin, we have to avoid the origin.
- Second, to get the result, we need the straight line γ_{1} along the \mathbb{R} from $\delta>0$ to $R>0$; then take limit $\delta \rightarrow 0$ and $R \rightarrow \infty$.
- Observe the integrand, besides $\ln x$, the remaining part $\frac{1}{\left(x^{2}+4\right)^{2}}$ is an even function, so we will use the straight line from $-R$ to $-\delta$. (Compare this step with the one in the next exercise).

With the above considerations, we will choose the contour $\Gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}\right)$ as shown below.

Moreover, we will take $\log _{-\pi / 2}(z)=\ln |z|+\mathbf{i} \operatorname{Arg}_{-\pi / 2}(z)$, where $\operatorname{Arg}_{-\pi / 2}(z) \in\left(\frac{-\pi}{2}, \frac{3 \pi}{2}\right)$.

First, since $2 \mathbf{i}$ is a pole of order 2 , the contour integral is given by

$$
\begin{aligned}
\int_{\Gamma} \frac{\log _{-\pi / 2}(z)}{(z+2 \mathbf{i})^{2}(z-2 \mathbf{i})^{2}} d z & =2 \pi \mathbf{i} \lim _{z \rightarrow \mathbf{i}} \frac{\mathrm{~d}}{\mathrm{~d} z}\left[\frac{\log _{-\pi / 2}(z)}{(z+2 \mathbf{i})^{2}}\right] \\
& =2 \pi \mathbf{i} \lim _{z \rightarrow \mathbf{i}}\left[\frac{1 / z}{(z+2 \mathbf{i})^{2}}-\frac{2(\ln |2 \mathbf{i}|+\mathbf{i} \pi / 2)}{(z+\mathbf{i})^{3}}\right]=\frac{\pi(\ln 2-1)}{16}+\frac{\pi^{2} \mathbf{i}}{32}
\end{aligned}
$$

Second, similar as the methods learned before, and observe that $\operatorname{Arg}_{-\pi / 2}\left(R e^{\mathrm{i} t}\right)=t \leq \pi$,

$$
\begin{aligned}
\left|\int_{\gamma_{2}} f\right| & \leq \int_{0}^{\pi} \frac{\left|\ln \left(R e^{\mathbf{i} t}\right)\right|+\left|\mathbf{i} \operatorname{Arg}_{-\pi / 2}\left(R e^{\mathbf{i} t}\right)\right|}{\left(R^{2}-4\right)^{2}}\left|R \mathbf{i} \mathbf{e}^{\mathbf{i} t}\right| d t=\int_{0}^{\pi} \frac{\ln R+|t|}{\left(R^{2}-4\right)^{2}} R d t \\
& \leq \frac{\pi(\ln R+\pi) R}{\left(R^{2}-4\right)^{2}} \longrightarrow 0, \quad \text { as } R \rightarrow \infty
\end{aligned}
$$

Third, on the arc $-\gamma_{4}$, we have $z(t)=\delta e^{\mathrm{it}}$ for $t \in[0, \pi]$ and $\operatorname{Arg}_{-\pi / 2}\left(\delta e^{\mathrm{i} t}\right)=t \leq \pi$. Thus,

$$
\begin{aligned}
\left|\int_{\gamma_{4}} f\right| & \leq \int_{0}^{\pi} \frac{\left|\ln \left(\delta e^{\mathbf{i} t}\right)\right|+\left|{\mathbf{i} \operatorname{Arg}_{-\pi / 2}\left(\delta e^{\mathbf{i} t}\right) \mid}_{\left(4-\delta^{2}\right)^{2}}\right| \delta \mathbf{i} e^{\mathbf{i} t} \mid d t}{} \\
& \leq \frac{\pi(\ln \delta+\pi) \delta}{\left(4-\delta^{2}\right)^{2}} \longrightarrow 0, \quad \text { as } \delta \rightarrow 0
\end{aligned}
$$

Fourth, it is easy to see that $\int_{\gamma_{1}} f(z) d z \longrightarrow \int_{0}^{\infty} \frac{\ln x d x}{\left(x^{2}+4\right)^{2}}$. It remains to work on γ_{3}.
On γ_{3}, we have $z(t)=t$ for $t \in[-R,-\delta] ; \log _{-\pi / 2}(t)=\ln |t|+\mathbf{i} \operatorname{Arg}_{-\pi / 2}(t)=\ln |t|+\mathbf{i} \pi$. So,

$$
\int_{\gamma_{3}} f(z) d z=\int_{-R}^{-\delta} \frac{|t|+\mathbf{i} \pi}{\left(t^{2}+4\right)^{2}} d t=\int_{\delta}^{R} \frac{|t|+\mathbf{i} \pi}{\left(t^{2}+4\right)^{2}} d t \longrightarrow \int_{0}^{\infty} \frac{\ln x d x}{\left(x^{2}+4\right)^{2}}+\mathbf{i} \pi \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{2}}
$$

Summarizing the above, we get

$$
2 \int_{0}^{\infty} \frac{\ln x d x}{\left(x^{2}+4\right)^{2}}+\mathbf{i} \pi \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{2}}=\frac{\pi(\ln 2-1)}{16}+\frac{\pi^{2} \mathbf{i}}{32}
$$

It follows from comparing real and imaginary parts that

$$
\int_{0}^{\infty} \frac{\ln x d x}{\left(x^{2}+4\right)^{2}}=\frac{\pi(\ln 2-1)}{32} \quad \text { and } \quad \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{2}}=\frac{\mathbf{i}}{32}
$$

EXERCISE 18.2. Convince yourself that if $\log _{\alpha}$, i.e., $\operatorname{Arg}_{\alpha}(z) \in(\alpha, \alpha+2 \pi)$ instead, as long the branch cut is away from the contour Γ, the results of the two integrals will be the same (but some of the steps may be different).

ExERCISE 18.3. Evaluate $\int_{0}^{\infty} \frac{\ln x d x}{\left(x^{3}+4\right)^{2}}$, in which the denominator of the integrand is slightly changed. Explain why the contour Γ above does not work. Instead, one should take γ_{3} from $R e^{2 \pi \mathbf{i} / 3}$ to $\delta e^{2 \pi \mathbf{i} / 3}$.

The above example and exercise demonstrate the following fact. Let f be a function that involves a branch. When it is restricted on suitable paths (γ_{1} and γ_{3} above), it mostly gives the real integrand with slight variations. In the way, the variation seems to give us trouble, but instead it makes the calculation work. This motivates the next method.

18.1.2 Along a Branch Cut

EXAMPLE 18.4. Let us try to work on the same integral $\int_{0}^{\infty} \frac{\ln x d x}{\left(x^{2}+4\right)^{2}}$ but we insist to use

$$
g(z)=\frac{\log _{0} z}{\left(z^{2}+4\right)^{2}}=\frac{\ln |z|+\mathbf{i} \operatorname{Arg}_{0}(z)}{\left(z^{2}+4\right)^{2}}, \quad \text { that is, the branch with } \operatorname{Arg}_{0}(z) \in(0,2 \pi)
$$

For the chosen branch of logarithm, the cut is along the positive real axis. We may try the contour shown in the picture.
The line γ_{1} is given by $t+\mathbf{i} \varepsilon$ for $t \in[\delta, R]$ and γ_{3} is $R-t+\delta-\mathbf{i} \varepsilon$ for $t \in[\delta, R]$. The circles γ_{2} and γ_{4} are having radii R and δ respectively. Obviously, at the end, we will take limit $\delta \rightarrow 0, \varepsilon \rightarrow 0$, and $R \rightarrow \infty$.

Similar to previous calculations in Example 18.1, we have the estimates that

$$
\left|\int_{\gamma_{2}} g(z) d z\right| \leq \frac{2 \pi R(\ln R+2 \pi)}{\left(R^{2}-4\right)^{2}} \quad \text { and } \quad\left|\int_{\gamma_{4}} g(z) d z\right| \leq \frac{2 \pi \delta(\ln \delta+2 \pi)}{\left(4-\delta^{2}\right)^{2}} .
$$

These two integrals approach to 0 as $R \rightarrow \infty$ and $\delta \rightarrow 0$. Moreover, as $\delta, \varepsilon \rightarrow 0$ and $R \rightarrow \infty$,

$$
\int_{\gamma_{1}} g(z) d z \longrightarrow \int_{0}^{\infty} \frac{\ln x d x}{\left(x^{2}+4\right)^{2}}
$$

On γ_{3}, we have $z(t)=R-t+\delta-\mathbf{i} \varepsilon$ for $t \in[\delta, R]$. Then $\log _{0} z(t)=\ln |z(t)|+\mathbf{i} \operatorname{Arg}_{0}(z(t))$, where $z(t) \rightarrow t$ and $\operatorname{Arg}_{0}(z(t)) \rightarrow 2 \pi$ as $\varepsilon \rightarrow 0$. Thus,

$$
\int_{\gamma_{3}} g(z) d z=\int_{\delta}^{R} \frac{\ln |z(t)|+\mathbf{i} \operatorname{Arg}_{0}(z(t))}{\left(z(t)^{2}+4\right)^{2}}(-d t) \longrightarrow \int_{0}^{\infty} \frac{-\ln x d x}{\left(x^{2}+4\right)^{2}}+\int_{0}^{\infty} \frac{-2 \pi \mathbf{i} d x}{\left(x^{2}+4\right)^{2}}
$$

Thus, this contour will not give us what we want because the desired integral cancels out in

$$
\int_{\gamma_{1}} g(z) d z+\int_{\gamma_{3}} g(z) d z \longrightarrow-2 \pi \mathbf{i} \int_{0}^{\infty} \frac{d x}{\left(x^{2}+4\right)^{2}}
$$

EXERCISE 18.5. Somebody suggests that $\int_{\Gamma} \frac{\left(\log _{0} z\right)^{2}}{\left(z^{2}+4\right)^{2}} d z$, where Γ is the branch cut above, may give us the answer. Try this method.

18.1.3 A Tale of Three Methods

Let us evaluate the integral $\int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+4\right)}$ by working on the contours Γ_{a}, Γ_{b}, and Γ_{c} with the branch cuts shown respectively from left to right below.

First, take the complex function $f(z)=\frac{1}{z^{1 / 2}\left(z^{2}+4\right)}$, which has singularities at $0,2 \mathbf{i}$, and $-2 \mathbf{i}$. It also involves a branch of

$$
z^{1 / 2}=e^{\frac{1}{2} \log _{\alpha} z}=\exp \left(\frac{1}{2} \ln |z|+\frac{\mathbf{i}}{2} \operatorname{Arg}_{\alpha} z\right)=\sqrt{|z|} \exp \left(\frac{\mathbf{i}}{2} \operatorname{Arg}_{\alpha} z\right), \quad \text { for suitable } \alpha
$$

We will take $\alpha=0, \frac{3 \pi}{2}$, and $-\pi$ respectively for Γ_{a}, Γ_{b}, and Γ_{c}.
Example 18.6. For Γ_{a} and the branch cut at $\alpha=0, \operatorname{Arg}_{0}(2 \mathbf{i})=\pi / 2$ and $\operatorname{Arg}_{0}(-2 \mathbf{i})=3 \pi / 2$. Therefore,

$$
\begin{aligned}
(2 \mathbf{i})^{1 / 2} & =e^{\frac{1}{2} \ln 2} \cdot e^{\frac{\mathbf{i}}{2}(\pi / 2)}=\sqrt{2} e^{\pi \mathbf{i} / 4}=1+\mathbf{i} \\
(-2 \mathbf{i})^{1 / 2} & =e^{\frac{1}{2} \ln 2} \cdot e^{\frac{\mathbf{i}}{2}(3 \pi / 2)}=\sqrt{2} e^{3 \pi \mathbf{i} / 4}=-1+\mathbf{i} \\
\operatorname{Res}(f, 2 \mathbf{i}) & =\frac{1}{\sqrt{2} e^{\pi \mathbf{i} / 4}(2 \mathbf{i}+2 \mathbf{i})}=\frac{-\mathbf{i}}{4 \sqrt{2}} e^{-\pi \mathbf{i} / 4}=\frac{-\mathbf{i}}{8}(1-\mathbf{i}), \\
\operatorname{Res}(f,-2 \mathbf{i}) & =\frac{1}{\sqrt{2} e^{3 \pi \mathbf{i} / 4}(-2 \mathbf{i}-2 \mathbf{i})}=\frac{\mathbf{i}}{4 \sqrt{2}} e^{-3 \pi \mathbf{i} / 4}=\frac{\mathbf{i}}{8}(-1-\mathbf{i}) .
\end{aligned}
$$

By Residue Theorem,

$$
\int_{\Gamma_{a}} f(z) d z=2 \pi \mathbf{i} \cdot \frac{-\mathbf{i}}{8}[(1-\mathbf{i})-(-1-\mathbf{i})]=\frac{\pi}{2} .
$$

On γ_{2}, we may compare with the full circle C_{R} of radius R,

$$
\left|\int_{\gamma_{2}} f(z) d z\right| \leq \int_{C_{R}}|f(z) d z| \leq \frac{2 \pi R}{\sqrt{R}\left(R^{2}-4\right)} \longrightarrow 0
$$

Similarly, $\gamma_{4} \subset C_{\delta}$, where C_{δ} is the circle with radius δ, and

$$
\left|\int_{\gamma_{4}} f(z) d z\right| \leq \int_{C_{\delta}}|f(z) d z| \leq \frac{2 \pi \delta}{\sqrt{\delta}\left(4-\delta^{2}\right)} \longrightarrow 0
$$

On $\gamma_{1}, z(t)=t+\mathbf{i} \varepsilon$, we have $\operatorname{Arg}_{0} z(t) \rightarrow 0$ and $z(t)^{1 / 2} \rightarrow \sqrt{t}$ as $\varepsilon \rightarrow 0$. Thus,

$$
\int_{\gamma_{1}} f(z) d z \longrightarrow \int_{0}^{\infty} \frac{d t}{\sqrt{t}\left(t^{2}+4\right)}
$$

On $-\gamma_{3}, z(t)=t-\mathbf{i} \varepsilon$. As $\varepsilon \rightarrow 0$, we have $\operatorname{Arg}_{0} z(t) \rightarrow 2 \pi$ and $z(t)^{1 / 2} \rightarrow-\sqrt{t}$. Therefore,

$$
\int_{\gamma_{3}} f(z) d z \longrightarrow-\int_{0}^{\infty} \frac{d t}{-\sqrt{t}\left(t^{2}+4\right)}=\int_{0}^{\infty} \frac{d t}{\sqrt{t}\left(t^{2}+4\right)}
$$

To summarize, we have

$$
2 \int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+4\right)}=\frac{\pi}{2}
$$

Example 18.7. For the second contour Γ_{b}, we deliberately use $\alpha=3 \pi / 2$ instead of $-\pi / 2$ to illustrate how things will nicely cancel out. Here $3 \pi / 2<\operatorname{Arg}_{3 \pi / 2}(z)<7 \pi / 2$, then

$$
\operatorname{Arg}_{3 \pi / 2}(2 \mathbf{i})=\sqrt{2} e^{5 \pi \mathbf{i} / 4}=-(1+\mathbf{i}) \quad \text { and } \quad \operatorname{Res}(f, 2 \mathbf{i})=\frac{\mathbf{i}}{8}(1-\mathbf{i})
$$

There is an additional negative when compared with the calculation in the cut of Γ_{a}. Nevertheless, we will see that things will work out fine. The estimates on γ_{2} and γ_{4} are beyond doubt and they go to zero. We only need to consider the situation along the real axis, i.e., γ_{1} and γ_{3}.

On $\gamma_{1}, z(t)=t$ and $\operatorname{Arg}_{3 \pi / 2}(t)=2 \pi$. So, $z(t)^{1 / 2}=-\sqrt{t}$ and

$$
\int_{\gamma_{1}} f(z) d z \longrightarrow \int_{0}^{\infty} \frac{d t}{-\sqrt{t}\left(t^{2}+4\right)}=-\int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+4\right)}
$$

On $-\gamma_{3}, z(t)=-t$ and $\operatorname{Arg}_{3 \pi / 2}(-t)=3 \pi$, which leads to $z(t)^{1 / 2}=-\mathbf{i} \sqrt{t}$. Therefore,

$$
\int_{\gamma_{3}} f(z) d z \longrightarrow \int_{0}^{\infty} \frac{d t}{-\mathbf{i} \sqrt{t}\left(t^{2}+4\right)}=\mathbf{i} \int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+4\right)}
$$

From above, we already have calculated the residue at $2 \mathbf{i}$ (note that $-2 \mathbf{i}$ is outside Γ_{b}). Thus,

$$
2 \pi \mathbf{i} \cdot \frac{\mathbf{i}}{8}(1-\mathbf{i})=\int_{\gamma_{1}} f(z) d z+\int_{\gamma_{3}} f(z) d z \longrightarrow(-1+\mathbf{i}) \int_{0}^{\infty} \frac{d x}{\sqrt{x}\left(x^{2}+4\right)}
$$

which gives the same answer $\pi / 4$.
Exercise 18.8. Find out whether the contour Γ_{c} is helpful to get the answer.

