## THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS MATH2230A (First term, 2015–2016) Complex Variables and Applications Notes 18 More Real Integrals

# **18.1** Integrands having Branches

As we know, there is a new concept about functions in complex, that is, the concept of branches. A real function which has clear definition may become a function with branches in complex. Typical examples are  $\ln x$  or  $x^r$  where  $r \in \mathbb{R}$ . This creates some troubles, but surprising also benefits.

#### 18.1.1 Choose an Indented Contour

EXAMPLE 18.1. To evaluate  $\int_0^\infty \frac{\ln x \, dx}{(x^2+4)^2}$ . The natural complex function to consider is  $f(z) = \frac{\text{A branch of } \log z}{(z^2+4)^2}.$ 

Which branch of  $\log z$  should we choose? Although there are many choices, we still need to choose it carefully. Of course, we would like to choose a convenient one to simplify the calculation. However, the choice must be compatible with the contour. Here are the key points.

- First,  $\ln(x)$  and any branch of  $\log z$  are not defined at the origin, we have to avoid the origin.
- Second, to get the result, we need the straight line  $\gamma_1$  along the  $\mathbb{R}$  from  $\delta > 0$  to R > 0; then take limit  $\delta \to 0$  and  $R \to \infty$ .
- Observe the integrand, besides  $\ln x$ , the remaining part  $\frac{1}{(x^2+4)^2}$  is an even function, so we will use the straight line from -R to  $-\delta$ . (Compare this step with the one in the next exercise).

With the above considerations, we will choose the contour  $\Gamma = (\gamma_1, \gamma_2, \gamma_3, \gamma_4)$  as shown below.



Moreover, we will take  $\operatorname{Log}_{-\pi/2}(z) = \ln |z| + \mathbf{i} \operatorname{Arg}_{-\pi/2}(z)$ , where  $\operatorname{Arg}_{-\pi/2}(z) \in \left(\frac{-\pi}{2}, \frac{3\pi}{2}\right)$ .

First, since 2i is a pole of order 2, the contour integral is given by

$$\int_{\Gamma} \frac{\log_{-\pi/2}(z)}{(z+2\mathbf{i})^2 (z-2\mathbf{i})^2} dz = 2\pi \mathbf{i} \lim_{z \to \mathbf{i}} \frac{\mathrm{d}}{\mathrm{d}z} \left[ \frac{\log_{-\pi/2}(z)}{(z+2\mathbf{i})^2} \right]$$
$$= 2\pi \mathbf{i} \lim_{z \to \mathbf{i}} \left[ \frac{1/z}{(z+2\mathbf{i})^2} - \frac{2(\ln|2\mathbf{i}| + \mathbf{i}\pi/2)}{(z+\mathbf{i})^3} \right] = \frac{\pi(\ln 2 - 1)}{16} + \frac{\pi^2 \mathbf{i}}{32}$$

Second, similar as the methods learned before, and observe that  $\operatorname{Arg}_{-\pi/2}(Re^{it}) = t \leq \pi$ ,

$$\begin{split} \left| \int_{\gamma_2} f \right| &\leq \int_0^\pi \frac{\left| \ln(Re^{\mathbf{i}t}) \right| + \left| \mathbf{i} \operatorname{Arg}_{-\pi/2}(Re^{\mathbf{i}t}) \right|}{(R^2 - 4)^2} \left| R\mathbf{i}e^{\mathbf{i}t} \right| \, dt = \int_0^\pi \frac{\ln R + |t|}{(R^2 - 4)^2} \, R \, dt \\ &\leq \frac{\pi \left( \ln R + \pi \right) R}{(R^2 - 4)^2} \longrightarrow 0 \,, \quad \text{as } R \to \infty. \end{split}$$

Third, on the arc  $-\gamma_4$ , we have  $z(t) = \delta e^{\mathbf{i}t}$  for  $t \in [0, \pi]$  and  $\operatorname{Arg}_{-\pi/2}(\delta e^{\mathbf{i}t}) = t \leq \pi$ . Thus,

$$\begin{split} \left| \int_{\gamma_4} f \right| &\leq \int_0^{\pi} \frac{\left| \ln(\delta e^{\mathbf{i}t}) \right| + \left| \mathbf{i} \operatorname{Arg}_{-\pi/2}(\delta e^{\mathbf{i}t}) \right|}{(4 - \delta^2)^2} \left| \delta \mathbf{i} e^{\mathbf{i}t} \right| \, dt \\ &\leq \frac{\pi \left( \ln \delta + \pi \right) \delta}{(4 - \delta^2)^2} \longrightarrow 0 \,, \quad \text{as } \delta \to 0. \end{split}$$

Fourth, it is easy to see that  $\int_{\gamma_1} f(z) dz \longrightarrow \int_0^\infty \frac{\ln x \, dx}{(x^2 + 4)^2}$ . It remains to work on  $\gamma_3$ . On  $\gamma_3$ , we have z(t) = t for  $t \in [-R, -\delta]$ ;  $\log_{-\pi/2}(t) = \ln |t| + \mathbf{i} \operatorname{Arg}_{-\pi/2}(t) = \ln |t| + \mathbf{i}\pi$ . So,

$$\int_{\gamma_3} f(z) \, dz = \int_{-R}^{-\delta} \frac{|t| + \mathbf{i}\pi}{(t^2 + 4)^2} \, dt = \int_{\delta}^{R} \frac{|t| + \mathbf{i}\pi}{(t^2 + 4)^2} \, dt \longrightarrow \int_{0}^{\infty} \frac{\ln x \, dx}{(x^2 + 4)^2} + \mathbf{i}\pi \int_{0}^{\infty} \frac{dx}{(x^2 + 4)^2}$$

Summarizing the above, we get

$$2\int_0^\infty \frac{\ln x \, dx}{(x^2+4)^2} + \mathbf{i}\pi \int_0^\infty \frac{dx}{(x^2+4)^2} = \frac{\pi(\ln 2 - 1)}{16} + \frac{\pi^2 \mathbf{i}}{32} \, .$$

It follows from comparing real and imaginary parts that

$$\int_0^\infty \frac{\ln x \, dx}{(x^2+4)^2} = \frac{\pi(\ln 2 - 1)}{32} \qquad \text{and} \qquad \int_0^\infty \frac{dx}{(x^2+4)^2} = \frac{\mathbf{i}}{32}$$

EXERCISE 18.2. Convince yourself that if  $\text{Log}_{\alpha}$ , i.e.,  $\text{Arg}_{\alpha}(z) \in (\alpha, \alpha + 2\pi)$  instead, as long the branch cut is away from the contour  $\Gamma$ , the results of the two integrals will be the same (but some of the steps may be different).

EXERCISE 18.3. Evaluate  $\int_0^\infty \frac{\ln x \, dx}{(x^3+4)^2}$ , in which the denominator of the integrand is slightly changed. Explain why the contour  $\Gamma$  above does not work. Instead, one should take  $\gamma_3$  from  $Re^{2\pi i/3}$  to  $\delta e^{2\pi i/3}$ .

The above example and exercise demonstrate the following fact. Let f be a function that involves a branch. When it is restricted on suitable paths ( $\gamma_1$  and  $\gamma_3$  above), it mostly gives the real integrand with slight variations. In the way, the variation seems to give us trouble, but instead it makes the calculation work. This motivates the next method.

### 18.1.2 Along a Branch Cut

EXAMPLE 18.4. Let us try to work on the same integral  $\int_0^\infty \frac{\ln x \, dx}{(x^2+4)^2}$  but we insist to use

$$g(z) = \frac{\log_0 z}{(z^2 + 4)^2} = \frac{\ln|z| + \mathbf{i} \operatorname{Arg}_0(z)}{(z^2 + 4)^2}, \quad \text{that is, the branch with } \operatorname{Arg}_0(z) \in (0, 2\pi).$$

For the chosen branch of logarithm, the cut is along the positive real axis. We may try the contour shown in the picture.

The line  $\gamma_1$  is given by  $t + i\varepsilon$  for  $t \in [\delta, R]$  and  $\gamma_3$  is  $R - t + \delta - i\varepsilon$  for  $t \in [\delta, R]$ . The circles  $\gamma_2$  and  $\gamma_4$  are having radii R and  $\delta$  respectively. Obviously, at the end, we will take limit  $\delta \to 0$ ,  $\varepsilon \to 0$ , and  $R \to \infty$ .



Similar to previous calculations in Example 18.1, we have the estimates that

$$\left| \int_{\gamma_2} g(z) \, dz \right| \le \frac{2\pi R (\ln R + 2\pi)}{(R^2 - 4)^2} \quad \text{and} \quad \left| \int_{\gamma_4} g(z) \, dz \right| \le \frac{2\pi \delta (\ln \delta + 2\pi)}{(4 - \delta^2)^2} \, .$$

These two integrals approach to 0 as  $R \to \infty$  and  $\delta \to 0$ . Moreover, as  $\delta, \varepsilon \to 0$  and  $R \to \infty$ ,

$$\int_{\gamma_1} g(z) \, dz \longrightarrow \int_0^\infty \frac{\ln x \, dx}{(x^2 + 4)^2}$$

On  $\gamma_3$ , we have  $z(t) = R - t + \delta - \mathbf{i}\varepsilon$  for  $t \in [\delta, R]$ . Then  $\operatorname{Log}_0 z(t) = \ln |z(t)| + \mathbf{i}\operatorname{Arg}_0(z(t))$ , where  $z(t) \to t$  and  $\operatorname{Arg}_0(z(t)) \to 2\pi$  as  $\varepsilon \to 0$ . Thus,

$$\int_{\gamma_3} g(z) \, dz = \int_{\delta}^R \frac{\ln|z(t)| + \mathbf{i} \operatorname{Arg}_0(z(t))}{(z(t)^2 + 4)^2} \, (-dt) \longrightarrow \int_0^\infty \frac{-\ln x \, dx}{(x^2 + 4)^2} + \int_0^\infty \frac{-2\pi \mathbf{i} \, dx}{(x^2 + 4)^2} \, .$$

Thus, this contour will not give us what we want because the desired integral cancels out in

$$\int_{\gamma_1} g(z) \, dz + \int_{\gamma_3} g(z) \, dz \longrightarrow -2\pi \mathbf{i} \int_0^\infty \frac{dx}{(x^2 + 4)^2}$$

EXERCISE 18.5. Somebody suggests that  $\int_{\Gamma} \frac{(\log_0 z)^2}{(z^2+4)^2} dz$ , where  $\Gamma$  is the branch cut above, may give us the answer. Try this method.

## 18.1.3 A Tale of Three Methods

Let us evaluate the integral  $\int_0^\infty \frac{dx}{\sqrt{x}(x^2+4)}$  by working on the contours  $\Gamma_a$ ,  $\Gamma_b$ , and  $\Gamma_c$  with the branch cuts shown respectively from left to right below.



First, take the complex function  $f(z) = \frac{1}{z^{1/2}(z^2+4)}$ , which has singularities at 0, 2**i**, and -2**i**. It also involves a branch of

$$z^{1/2} = e^{\frac{1}{2}\operatorname{Log}_{\alpha} z} = \exp\left(\frac{1}{2}\ln|z| + \frac{\mathbf{i}}{2}\operatorname{Arg}_{\alpha} z\right) = \sqrt{|z|}\exp\left(\frac{\mathbf{i}}{2}\operatorname{Arg}_{\alpha} z\right), \quad \text{for suitable } \alpha.$$

We will take  $\alpha = 0, \frac{3\pi}{2}$ , and  $-\pi$  respectively for  $\Gamma_a, \Gamma_b$ , and  $\Gamma_c$ .

EXAMPLE 18.6. For  $\Gamma_a$  and the branch cut at  $\alpha = 0$ ,  $\operatorname{Arg}_0(2\mathbf{i}) = \pi/2$  and  $\operatorname{Arg}_0(-2\mathbf{i}) = 3\pi/2$ . Therefore,

$$\begin{aligned} (2\mathbf{i})^{1/2} &= e^{\frac{1}{2}\ln 2} \cdot e^{\frac{\mathbf{i}}{2}(\pi/2)} = \sqrt{2} \, e^{\pi\mathbf{i}/4} = 1 + \mathbf{i} \,, \\ (-2\mathbf{i})^{1/2} &= e^{\frac{1}{2}\ln 2} \cdot e^{\frac{\mathbf{i}}{2}(3\pi/2)} = \sqrt{2} \, e^{3\pi\mathbf{i}/4} = -1 + \mathbf{i} \,, \\ \operatorname{Res}(f, 2\mathbf{i}) &= \frac{1}{\sqrt{2} \, e^{\pi\mathbf{i}/4}(2\mathbf{i}+2\mathbf{i})} = \frac{-\mathbf{i}}{4\sqrt{2}} e^{-\pi\mathbf{i}/4} = \frac{-\mathbf{i}}{8}(1-\mathbf{i}) \,, \\ \operatorname{Res}(f, -2\mathbf{i}) &= \frac{1}{\sqrt{2} \, e^{3\pi\mathbf{i}/4}(-2\mathbf{i}-2\mathbf{i})} = \frac{\mathbf{i}}{4\sqrt{2}} e^{-3\pi\mathbf{i}/4} = \frac{\mathbf{i}}{8}(-1-\mathbf{i}) \end{aligned}$$

By Residue Theorem,

$$\int_{\Gamma_a} f(z) dz = 2\pi \mathbf{i} \cdot \frac{-\mathbf{i}}{8} \left[ (1 - \mathbf{i}) - (-1 - \mathbf{i}) \right] = \frac{\pi}{2} \,.$$

On  $\gamma_2$ , we may compare with the full circle  $C_R$  of radius R,

$$\left| \int_{\gamma_2} f(z) \, dz \right| \le \int_{C_R} |f(z) \, dz| \le \frac{2\pi R}{\sqrt{R}(R^2 - 4)} \longrightarrow 0.$$

Similarly,  $\gamma_4 \subset C_{\delta}$ , where  $C_{\delta}$  is the circle with radius  $\delta$ , and

$$\left| \int_{\gamma_4} f(z) \, dz \right| \le \int_{C_{\delta}} |f(z) \, dz| \le \frac{2\pi\delta}{\sqrt{\delta}(4-\delta^2)} \longrightarrow 0 \, .$$

On  $\gamma_1$ ,  $z(t) = t + i\varepsilon$ , we have  $\operatorname{Arg}_0 z(t) \to 0$  and  $z(t)^{1/2} \to \sqrt{t}$  as  $\varepsilon \to 0$ . Thus,

$$\int_{\gamma_1} f(z) \, dz \longrightarrow \int_0^\infty \frac{dt}{\sqrt{t}(t^2 + 4)}$$

On  $-\gamma_3$ ,  $z(t) = t - \mathbf{i}\varepsilon$ . As  $\varepsilon \to 0$ , we have  $\operatorname{Arg}_0 z(t) \to 2\pi$  and  $z(t)^{1/2} \to -\sqrt{t}$ . Therefore,

$$\int_{\gamma_3} f(z) \, dz \longrightarrow -\int_0^\infty \frac{dt}{-\sqrt{t}(t^2+4)} = \int_0^\infty \frac{dt}{\sqrt{t}(t^2+4)} \, dt$$

To summarize, we have

$$2\int_0^\infty \frac{dx}{\sqrt{x}(x^2+4)} = \frac{\pi}{2} \,.$$

EXAMPLE 18.7. For the second contour  $\Gamma_b$ , we deliberately use  $\alpha = 3\pi/2$  instead of  $-\pi/2$  to illustrate how things will nicely cancel out. Here  $3\pi/2 < \operatorname{Arg}_{3\pi/2}(z) < 7\pi/2$ , then

$$\operatorname{Arg}_{3\pi/2}(2\mathbf{i}) = \sqrt{2}e^{5\pi\mathbf{i}/4} = -(1+\mathbf{i})$$
 and  $\operatorname{Res}(f, 2\mathbf{i}) = \frac{\mathbf{i}}{8}(1-\mathbf{i}).$ 

There is an additional *negative* when compared with the calculation in the cut of  $\Gamma_a$ . Nevertheless, we will see that things will work out fine. The estimates on  $\gamma_2$  and  $\gamma_4$  are beyond doubt and they go to zero. We only need to consider the situation along the real axis, i.e.,  $\gamma_1$  and  $\gamma_3$ .

On  $\gamma_1$ , z(t) = t and  $\operatorname{Arg}_{3\pi/2}(t) = 2\pi$ . So,  $z(t)^{1/2} = -\sqrt{t}$  and

$$\int_{\gamma_1} f(z) dz \longrightarrow \int_0^\infty \frac{dt}{-\sqrt{t}(t^2+4)} = -\int_0^\infty \frac{dx}{\sqrt{x}(x^2+4)} \,.$$

On  $-\gamma_3$ , z(t) = -t and  $\operatorname{Arg}_{3\pi/2}(-t) = 3\pi$ , which leads to  $z(t)^{1/2} = -\mathbf{i}\sqrt{t}$ . Therefore,

$$\int_{\gamma_3} f(z) \, dz \longrightarrow \int_0^\infty \frac{dt}{-\mathbf{i}\sqrt{t}(t^2+4)} = \mathbf{i} \int_0^\infty \frac{dx}{\sqrt{x}(x^2+4)} \, dx$$

From above, we already have calculated the residue at 2i (note that -2i is outside  $\Gamma_b$ ). Thus,

$$2\pi \mathbf{i} \cdot \frac{\mathbf{i}}{8} (1 - \mathbf{i}) = \int_{\gamma_1} f(z) \, dz + \int_{\gamma_3} f(z) \, dz \longrightarrow (-1 + \mathbf{i}) \int_0^\infty \frac{dx}{\sqrt{x}(x^2 + 4)} \, ,$$

which gives the same answer  $\pi/4$ .

EXERCISE 18.8. Find out whether the contour  $\Gamma_c$  is helpful to get the answer.