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17.1 Trigonometric Functions over a Range of 2π

An important application of complex contour integration is to evaluate certain real definite

integrals. There is not much theory behind so we mostly illustrate the key points by examples.

Suppose we are to find

∫ 2π

0

dθ

1 + a sin θ
where 0 < a < 1.

There are two crucial things in this type of integrals.

• The lower limit and upper limit of the integral are 0 and 2π. It is a range of 2π, i.e., over

the interval [α, α + 2π]. That is the parameter range of the unit circle, S1, with center 0

and radius 1.

• The integrand only involves trigonometric functions, or essentially made up of sine and

consine.

To summarize, this method works for the following type of integral (or something that can be

transformed to such form) ∫ α+2π

α
F (cos θ, sin θ) dθ .

Note that sin θ =
1

2i

(
eiθ − e−iθ

)
and cos θ =

1

2

(
eiθ + e−iθ

)
. In addition, on the unit circle S1,

we have z = eiθ and 1/z = e−iθ. Thus,

1

1 + a sin θ
=

1

1 + a
2i

(
z − 1

z

) .
Also, if z = eiθ, then dz = ieiθ dθ = iz dθ. Therefore, we have∫ 2π

0

dθ

1 + a sin θ
=

∫
S1

1

1 + a
2i

(
z − 1

z

) 1

iz
dz =

∫
S1

2

a
(
z2 + 2i

a z − 1
) dz .

Note that f(z) =
2/a

z2 + 2i
a z − 1

=
2/a

(z − z1)(z − z2)
where

z1 =
−i+ i

√
1− a2

a
, z1 =

−i− i
√
1− a2

a
.

For 0 < a < 1, it is easy to verify that |z1| < 1 and |z2| > 1. Thus,∫ 2π

0

dθ

1 + a sin θ
=

∫
S1

2

a
(
z2 + 2i

a z − 1
) dz = 2πiRes(f, z1)

= 2πi
2/a

z1 − z2
=

2πi · (2/a)(
2i
√
1− a2

)
/a

=
2π√
1− a2

.

Note that if a ≥ 1, the original real integral becomes an improper integral. The expressions for

the two zeros z1, z2 are different and they lie on S1.



17.2 Improper Integrals

We assume that the reader is familiar with the knowledge of the definite integral of a function

on a closed integral [a, b], i.e., ∫ b

a
f(x) dx .

Let us first recall the meaning of improper integrals. There are two possibilities that lead to

an improper integral, the integrand function is undefined or the domain is not a closed interval.

Nevertheless, we can summarize them into the following.

Definition 17.1. Let f be a continuous function on the interval (a, b] or [b,∞) for a, b ∈ R.
Then, provided that the limits exist,∫ b

a
f(x) dx

def
:== lim

δ→0

∫ b

a+δ
f(x) dx ,∫ ∞

b
f(x) dx

def
:== lim

R→∞

∫ R

b
f(x) dx .

With such a definition, all the other improper integrals can be reduced to these two situations.

For example, ∫ ∞

−∞
f(x) dx = lim

R1→∞

∫ 0

−R1

f(x) dx+ lim
R2→∞

∫ R2

0
f(x) dx .

Note that in the above, the two limits R1 → ∞ and R2 → ∞ are independent. There is a

concept called the principal value of an improper integral, in which the limits are related,

P.V.

∫ ∞

−∞
f(x) dx

def
:== lim

R→∞

∫ R

−R
f(x) dx .

The principal value and the true improper integral coincide if the integrand is an even function.

Example 17.2. Consider f(x) = x on (−∞,∞). We have

P.V.

∫ ∞

−∞
f(x) dx = 0, while

∫ ∞

−∞
f(x) dx diverges .

17.2.1 Improper Integral of an Even Function

Example 17.3. Let us consider the example

∫ ∞

0

x2 dx

x6 + 1
=

1

2

∫ ∞

−∞

x2 dx

x6 + 1
=

1

2
P.V.

∫ ∞

−∞

x2 dx

x6 + 1
.

Note that the two equalities above are true because f(x) =
x2

x6 + 1
is an even function. Take the

contour Γ = (γ1, γ2) as in the picture, in which γ1 is along the real axis and γ2 is a semi-circle

and the red dots represent the singularities.

i-

-R R

i
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Mathematically, on γ1, z = t for t ∈ [−R,R]; on γ2, z = Reit, t ∈ [0, π]. Let

f(z) =
z2

z6 + 1
=

z2

(z − z0)(z − ωz0) · · · (z − ω5z0)
, where z0 = eiπ/6, ω = e2iπ/6 .

It can be seen that z0, ωz0, ω
2z0 lie inside Γ while ω3z0, ω

4z0, ω
5z0 are outside. Therefore,∫

Γ
f(z) dz = 2πi

[
Res(f, z0) + Res(f, ωz0) + Res(f, ω2z0)

]
= 2πi

(
1

6i
− 1

6i
+

1

6i

)
=

π

3
.

Note that in the above, it is easy to consider h(z) = z2 and q(z) = z6 + 1 and get the residues

by h(z)/q′(z). Therefore, for any R > 1, we have

π

3
=

∫
γ1

f(z) dz +

∫
γ2

f(z) dz . (∗)

On the other hand, along the contour γ1,∫
γ1

f(z) dz =

∫ R

−R
f(x) dx =

∫ R

−R

x2

x6 + 1
dx −→ P.V.

∫ ∞

−∞

x2

x6 + 1
dx =

∫ ∞

−∞

x2

x6 + 1
dx .

Along the contour γ2, we have z = Reit for t ∈ [0, π], thus∫
γ2

f(z) dz =

∫ π

0

R2e2it

R6e6it + 1
·Rieitdt =

∫ π

0

R3ie3it dt

R6e6it + 1
.

Since
∣∣R6e6it + 1

∣∣ ≥ R6 − 1 and
∣∣R3ie3it

∣∣ = R3, we have∣∣∣∣∫
γ2

f(z) dz

∣∣∣∣ ≤ ∫ π

0

R3 dt

R6 − 1
=

πR3

R6 − 1
−→ 0 .

Note that in Equation (∗) above, LHS does not depend on R while RHS depends on R. This

guarantees that for R → ∞, the limit of RHS exists. Hence,∫ ∞

0

x2 dx

x6 + 1
=

1

2

∫ ∞

−∞

x2 dx

x6 + 1
=

π

6
.

17.2.2 Integrals from Fourier Analysis

In Fourier Analysis, we often come across integrals of the form∫ ∞

−∞
f(x) cos(ax) dx, and

∫ ∞

−∞
f(x) sin(ax) dx .

These can also be done by the method of residue.

Example 17.4. To evaluate

∫ ∞

−∞

cos(3x) dx

(x2 + 1)2
, we consider the function

f(z) =
e3iz

(x2 + 1)2
=

e3iz

(z + i)2(z − i)2
.
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-i

-R R

i

Take the contour Γ = (γ1, γ2), where γ1 is parametrized by z(t) = t for t ∈ [−R,R] and γ2 by

z(t) = Reit for t ∈ [0, π]. Then∫
γ1

f =

∫ R

−R

cos(3x) dx

(x2 + 1)2
+ i

∫ R

−R

sin(3x) dx

(x2 + 1)2
,

∣∣∣∣∫
γ2

f

∣∣∣∣ ≤ ∫ π

0

∣∣∣e3iReit
∣∣∣

(R2 − 1)2
·
∣∣∣Rieit

∣∣∣ dt = ∫ π

0

R

(R2 − 1)2

∣∣∣e3R(i cos t−sin t)
∣∣∣ dt

=

∫ π

0

R

(R2 − 1)2
e−3R sin t dt ≤ πR

(R2 − 1)2
because e−3R sin t ≤ 1 .

From the above, we can conclude that

∫ ∞

−∞

e3ix

(x2 + 1)2
dx = lim

R→∞

∫
Γ
f(z) dz = 2πiRes(f, i).

It is clear that i is a pole of order 2 of f(z) =
φ(z)

(z − i)2
where φ(z) =

e3iz

(z + i)2
. Thus,

Res(f, i) = lim
z→i

φ′(z) = −ie−3 .

To summarize,∫ ∞

−∞

e3ix

(x2 + 1)2
dx =

∫ ∞

−∞

cos(3x)

(x2 + 1)2
dx+ i

∫ ∞

−∞

sin(3x)

(x2 + 1)2
dx = 2πi(−ie−3) =

2π

e3
.

The result comes from comparing the real and imaginary parts in the above equation.

Note that a crucial step is about the estimate∣∣∣∣∫
γ2

f

∣∣∣∣ ≤ R due to arc length γ2
R4 due to the function f

.

This is true here only because of the high power of the denominator in f . In the future, we may

come across difficult cases.

Example 17.5. Evaluate the improper integral P.V.

∫ ∞

−∞

x sinx dx

x2 + 2x+ 2
. Naturally, let

g(z) =
zeiz

z2 + 2z + 2
=

zeiz

(z + 1− i)(z + 1 + i)
.

-1+

i
-

-1-

i

R R
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Similar to before, we have

∫
γ1

g(z) dz −→ P.V.

∫ ∞

−∞

x sinx dx

x2 + 2x+ 2
. Moreover, we have

∫
Γ
g(z) dz = 2πiRes(g,−1 + i) = 2πi

(−1 + i)e−i−1

−1 + i+ 1 + i
=

π(−1 + i)

e1+i
.

The key to the solution is to estimate

∣∣∣∣∫
γ2

g(z) dz

∣∣∣∣ in terms of R. Note that

∣∣∣∣∫
γ2

g(z) dz

∣∣∣∣ ≤ ∫ π

0

∣∣Reit
∣∣ · ∣∣∣ei(Reit)

∣∣∣
|(Reit + 1− i)(Reit + 1 + i|

∣∣∣Rieit
∣∣∣ dt

=

∫ π

0

R2 e−R sin t

|R− |1− i|| · |R− |1 + i||
≤ πR2∣∣R−

√
2
∣∣2 which ̸→ 0 .

Therefore, simply using e−R sin t ≤ e0 = 1 above is not enough to get our desired conclusion. We

will get a better estimate of it below.

Let us consider the inequality above∣∣∣∣∫
γ2

g(z) dz

∣∣∣∣ ≤ ∫ π

0

R2 e−R sin t

|R− |1− i|| · |R− |1 + i||
=

R2∣∣R−
√
2
∣∣2

∫ π

0
e−R sin t dt .

Previously, we used e−R sin t ≤ 1 to conclude that

∫ π

0
e−R sin t dt ≤ π. We need to improve this

estimate and the following pictures may be illustrative.

Π

4
Π

2
3 Π
4

Π

1

Π

4
Π

2
3 Π
4

Π

1

The blue curve in the left hand picture is the graph of sin t and the one in the right hand picture

is e−R sin t. The integral

∫ π

0
e−R sin t dt is the area of the shaded region, which is clearly much

less than π (the area of the rectangle). We would try to control the shaded area by R.

Consider the triangle in the right hand picture, which is given by

t 7→ φ(t) =

{
2t/π t ∈

[
0, π2

]
−2(t− π)/π t ∈

[
π
2 , π

]
.

Clearly, φ(t) ≤ sin t and thus e−R sin t ≤ e−Rφ(t). Therefore∫ π

0
e−R sin t dt ≤

∫ π

0
e−Rφ(t) dt = 2

∫ π/2

0
e−2Rt/π dt =

π

R

(
1− e−R

)
≤ π

R
.

Consequently, P.V.

∫ ∞

−∞

x sinx dx

x2 + 2x+ 2
= Re

(
π(−1 + i)

e1+i

)
=

π

e
[sin(1)− cos(1)].
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17.2.3 Getting around a Simple Pole

In all the example above, the singularities are in the complex plane but not on the real line.

Thus, we can use residue to do the calculation. If there is a singularity on the real line, then

the integral may blow up. We will see below that the only workable case is that the singularity

is a simple pole .

Example 17.6. To find P.V.

∫ ∞

−∞

sinx dx

x2 + πx− 2π2
. Following the same technique as before, let

g(z) =
eiz

z2 + πz − 2π2
=

eiz

(z − π)(z + 2π)
.

Oop! The singularity set {−2π, π} ⊂ R. So, it is impossible to draw a straight line from −R

to R without passing through the singularities. Therefore, we use small indented circles to get

around the singularities, Γ = (γ1, γ2, γ3, γ4, γ5, γ6) as shown below.

γ 6

γ5

γ4
γ3

-

2
γ1

γ

R R

More precisely, the small circles (in negative orientation) can be given by

−γ2 : z = −2π + δeit, t ∈ [0, π]; and − γ4 : z = π + εeit, t ∈ [0, π] .

It is expected that

∫
γ1

g(z) dz +

∫
γ3

g(z) dz +

∫
γ5

g(z) dz will give what we want when R → ∞,

δ → 0, and ε → 0. Moreover, by the same argument as in the previous examples, we have∣∣∣∣∫
γ6

g(z) dz

∣∣∣∣ ≤ πR

(R− π)(R− 2π)
−→ 0, and

∫
Γ
g(z) dz = 0 .

The crucial step is to find the contour integral along γ2 and γ4. That is∫
γ2

g(z) dz = −
∫ π

0

ei(−2π+δeit)

(−2π + δeit − π) δeit
δieit dt −→ −

∫ π

0

e−2πi

−3π
i dt =

i

3π
,∫

γ4

g(z) dz = −
∫ π

0

ei(π+εeit)

εeit (π + εeit + 2π)
εieit dt −→ −

∫ π

0

eπi

3π
i dt =

i

3π
.

Hence we have P.V.

∫ ∞

−∞

cosx dx

x2 + πx− 2π2
= 0 and P.V.

∫ ∞

−∞

sinx dx

x2 + πx− 2π2
=

−2

3π
.

Note that in the above, the cancellation of δ and ε works in both cases because both −2π and π

are simple poles of the function. This is indeed related to the convergence of integrating an

unbounded function discussed in mathematical analysis.
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