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16.1 Singularities and Zeros

For now, we have known the following facts.

• If f is analytic on and inside a closed contour Γ, then

∫
Γ
f = 0.

• If f is analytic on Γ and except a few points, zk, k = 1, . . . , n inside it, then∫
Γ
f =

n∑
k=1

∫
Ck

f where Ck is a small circle with center zk.

• If f is analytic on B(z0, ε) \ {z0}, then f has a Laurent Series on B(z0, ε),

f(z) =
∞∑
k=2

a−k

(z − z0)k
+

a−1

z − z0
+ a0 +

∞∑
ℓ=1

aℓ(z − z0)
ℓ .

If C0 is a small circle with center z0, by direct calculation, we have∫
C0

f = · · · ·+ 0 + 0 + 2πi a−1 + 0 + 0 + · · · · .

The term a−1 is the most important in the Laurent Series and it often can be found by other

methods. Thus, we specially focus on it.

16.1.1 Isolated Singularities

Observe that the above discussion only works if there are finitely many singularities inside Γ.

Example 16.1. Let f(z) = 1/ sin
(
π
z

)
. The set of singularities is {0} ∪ { 1/n : n ∈ Z }. Clearly,

if a contour Γ contains 0 in its inside, there will be infinitely many singularities inside. Moreover,

at z0 = 0, the condition for Laurent Series does not hold.

Definition 16.2. A point z0 ∈ C is an isolated singularity for a function f if f is analytic on

B(z0, ε) \ {z0} for some ε > 0.

Then, at an isolated singularity z0, there is a Laurent Series for the function f . The singularity

is classified into three types as follows.

• It is removable if the Laurent Series does not contain any term of negative powers, i.e., it

is indeed a Power Series. A typical example is
sin z

z
, z0 = 0.

• It is essential if the Laurent Series has infinitely many terms of negative powers. A typical

example is e1/z, z0 = 0.



• It is a pole of orde p if the smallest negative power is −p in the Laurent Series, i.e.,

f(z) =

p∑
k=1

a−k

(z − z0)k
+

∞∑
ℓ=0

aℓ(z − z0)
ℓ, a−p ̸= 0 .

If p = 1, it is called a simple pole.

Example 16.3. Let f(z) =
(ez − 1) sin z

z3(z − 1)2(z + 1)(z − π)
. The singularity set is {−1, 0, 1, πi }.

Most of the times, we can simply look at the function and determine the order of the pole. For

z0 = −1, we see that

g(z) =
(ez − 1) sin z

z3(z − 1)2(z − π)

is analytic in a small ball at center −1 and g(−1) ̸= 0. Therefore, g(z) is a power series of (z+1)

near −1 and the constant term is g(−1). Then the Laurent Series of f becomes

g(−1)

z + 1
+ power series of (z + 1).

For this reason, we know that −1 is a simple pole of f . Similarly, the point z0 = 1 is a pole of

order 2. When we consider the singularity π, it is not a simple pole because sin(π) = 0. In fact,

sin z = − sin(z − π) = −(z − π)

[
1− 1

3!
(z − π)2 +

1

5!
(z − π)4 − · · · ·

]
.

Thus, π is indeed a removable singularity. For z0 = 0, observe the power series of ez − 1 and

sin z, one knows that z0 = 0 is a simple pole also.

16.1.2 Residue

As we have mentioned, if C0 is a small circle with center at an isolated singularity z0, then the

Laurent Series can be integrated term by term and the coefficient a−1 in the series most crucial

because ∫
C0

f(z) dz = 2πia−1 .

For this, we define the Residue of f at z0 to be a−1 of the Laurent Series at z0. It is denoted by

Resz0f, or Resf(z0), or Res(f, z0) .

Example 16.4. Let f(z) =
2z + 1

z3(z2 + 1)
. We have poles at 0, ±i. By partial fraction,

f(z) =
1

z3
+

2

z2
− 1

z
+

1
2 − i

z + i
+

1
2 + i

z − i
.

This shows that (give the argument yourself)

Res(f, 0) = −1; Res(f,−i) =
1

2
− i; Res(f, i) =

1

2
+ i .

Theorem 16.5 (Cauchy Residue Theorem). Let Γ be a simple closed (positively oriented) con-

tour with bounded complement component S. If f is analytic on Γ and S \ { z1, . . . , zm } then∫
Γ
f = 2πi

m∑
k=1

Res(f, zk) .
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It follows very easily from Cauchy-Goursat Theorem. The function f is analytic on the comple-

ment S \ (Γ,−C1, . . . ,−Cm) and the integral is zero.

1C

2C Cm

Γ

Thus, we have

∫
Γ
f(z) dz =

m∑
k=1

∫
Ck

f(z) dz = 2πi

m∑
k=1

Res(f, zk) . In fact, there is a more general

version that does not require the contour to be simple.

Theorem 16.6 (General Residue Theorem). Let f : Ω ⊂ C → C be analytic except at the points

z1, . . . , zm ∈ Ω. If Γ is a closed contour in Ω, then∫
Γ
f = 2πi

m∑
k=1

ν(Γ, zk)Res(f, zk) ,

where ν(Γ, zk) is the winding number of Γ about zk.

Intuitively, the winding number counts how many times the contour Γ circles around a point.

So, it two points are in the same complement component of Ω \ Γ, the winding number is the

same. Let us use the following picture to illustrate the winding number.

γ1

21 -1

1

-1

0

00

0

1

Γ
Γ

The proof is simply by decomposing Γ into several simple closed contours. For example, on the

right hand side of the picture, if a singularity lies in the component marked −1, only the green

contour γ1 has will give a residue and the curve is negatively oriented. In the middle of the

picture, if zk lies in the component marked 2, the two violet contours (positively oriented) will

contribute to the residue.

Example 16.4. This is an example given above, that f(z) =
2z + 1

z3(z2 + 1)
and

Res(f, 0) = −1; Res(f,−i) =
1

2
− i; Res(f, i) =

1

2
+ i .

i-
Γ

i
For the contour on the left,

ν(Γ, 0) = ν(Γ,−i) = 1 , and ν(Γ, i) = 0 .

Thus,

∫
Γ
f(z) dz = 2πi

(
−1 +

1

2
− i

)
.
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Example 16.7. Let f(z) =
1

eiz − 1
, which has singularities at { 2kπ : k ∈ Z }. Find it integral

along the following contours.

Γ

2Γ

0

Γ1

First, it is easy that

∫
Γ0

f = 0 (give your own reason).

Second, at z0 = 0, we may write the power series eiz − 1 = z

(
i− z

2!
− iz2

3!
+ · · · ·

)
and

f(z) =
1

z
· 1

i− z
2! −

iz2

3! + · · · ·
=

1

z

[
−i− z

2!
+

(
1

3!
− 1

(2!)2

)
z2 + · · · ·

]
=
g(z)

z
.

From this, we can see that Res(f, 0) = −i and so

∫
Γ1

f = 2π. The same result also follows from

∫
Γ1

f(z) dz =

∫
Γ1

g(z)

z
dz = 2πi g(0) = 2π, by Cauchy Integral Formula.

We will leave that

∫
Γ2

f = 4π as an exercise.

16.2 Poles and Zeros

Recall that a function f has a pole of order p at z0 if it is analytic on B(z0, ε) \ {z0} and its

Laurent Series is of the form

f(z) =

p∑
k=1

a−k

(z − z0)k
+

∞∑
ℓ=0

aℓ(z − z0)
ℓ , where a−p ̸= 0.

An obvious example that will create a pole of order p is

f(z) =
analytic

(z − z0)p
=

∑∞
k=0 ak(z − z0)

k

(z − z0)p
=

p∑
k=1

ap−k

(z − z0)k
+

∞∑
ℓ=0

ap+1+ℓ(z − z0)
ℓ .

Question. What is the general pattern of such a pole? Is the above the only situation?

In order to study the situation, we start with the study of zeros. First of all, if h is analytic on

B(z0, ε), it has a power Series. Therefore, h(z0) = 0 really means a0 = 0 and possible more zero

terms.

Definition 16.8. Let h be analytic on B(z0, η). The point z0 is called a zero of order m of h if

h(z0) = 0 = h′(z0) = · · · = h(m−1)(z0), and h(m)(z0) ̸= 0 .
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Equivalently, h has a Taylor Series at z0 of the form

h(z) = (z − z0)
m

∞∑
k=m

ak(z − z0)
k−m = (z − z0)

mφ(z) .

The function φ(z) above is analytic on B(z0, η) and φ(z0) ̸= 0. Then by continuity of φ and

taking a smaller radius 0 < ε < η, we may assume that φ ̸= 0 on B(z0, ε). Since (z − z0) ̸= 0

on B(z0, ε) \ {z0}, we have h(z) ̸= 0 on the punctured ball. Hence, z0 is an isolated zero of h.

From the above argument, we see that non-constant analytic functions only have isolated zeros.

Theorem 16.9. Let f be analytic on Ω and z0 ∈ Ω. If f(z0) = 0 and there exists a sequence

zn → z0 such that f(zn) = 0, then f ≡ 0 on Ω. In particular, if f |L≡ 0 where L ⊂ Ω is a line

or a continuous arc, then f ≡ 0 on Ω.

Now, we can describe the situation of a pole in the above language. The proof is trivial.

Theorem 16.10. If h(z), q(z) are analytic on a ball B(z0, η), where z0 is a zero of order m for h

and one of order m + p for q, then z0 is a pole of order p for f(z) = h(z)/q(z). The converse

is also true, i.e., any pole of order p can be written into this form.

16.2.1 Calculating Residue at Poles

Since calculating residue is so helpful in finding contour integral, this becomes a central matter.

For an essential singularity, there is no short cut. The only way is to write the Laurent Series

and get the a−1 term.

On the other hand, there are good methods for the residue at a pole. The methods are usually

neat and tidy for a simple pole. And the understanding of such methods will be helpful to

multiple pole.

Let z0 be a simple pole of the function f . Then we have

f(z) =
a−1

z − z0
+

∞∑
ℓ=0

aℓ(z − z0)
ℓ .

Then, multiplying (z − z0) to both sides, we have

f(z)(z − z0) = a−1 + (z − z0)
∞∑
ℓ=0

aℓ(z − z0)
ℓ .

Thus, lim
z→z0

f(z)(z − z0) = a−1 = Res(f, z0). Note that although we write lim
z→z0

, the actual

calculation is more like substituting z0 to both sides.

Example 16.11. Consider f(z) =
(eπz − 1) sin(2πz)

z3(z2 + 1)
which has poles 0, i,−i; all of order 1.

Then

Res(f, i) = lim
z→i

(eπz − 1) sin(2πz)

z3(z + i)
=

(eπi − 1) sin(2πi)

i3(i+ i)
= − sin(2πi) .

In the process of finding Res(f, 0), one needs to find limit instead of substitution.
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The above method can easily be extended to the case of multiple pole at z0, in which case

f(z) =

p∑
k=2

a−k

(z − z0)k
+

a−1

z − z0
+

∞∑
ℓ=0

aℓ(z − z0)
ℓ .

After multiplying both sides with (z − z0)
p, we have

f(z)(z − z0)
p = a−p + a−p+1(z − z0) + · · ·+ a−1(z − z0)

p−1 + (z − z0)
p

∞∑
ℓ=0

aℓ(z − z0)
ℓ .

Now, simply taking z → z0 will not give a−1. So, we need to differentiate the equation (p− 1)th

times first. As a result, Res(f, z0) comes from this,

lim
z→z0

dp−1

dzp−1
[f(z)(z − z0)

p] = (p− 1)! a−1 + 0 + 0 + · · · .

In the case that z0 is a simple pole, as mentioned in how a pole can occur, we know that

f(z) =
h(z)

q(z)
=

h(z)

(z − z0)ψ(z)
, h(z0) ̸= 0, ψ(z0) ̸= 0 .

Since both h and ψ are analytic, we may write them into power series,

f(z) =
1

z − z0
·
∑∞

k=0 ak(z − z0)
k∑∞

ℓ=0 bk(z − z0)ℓ
=

1

z − z0

∞∑
j=0

cj(z − z0)
j .

It follows that

Res(f, z0) = c0 =
a0
b0

=
h(z0)

ψ(z0)
=
h(z0)

q′(z0)
.

For example, Res

[
ez

cos z
,
π

2

]
=

eπ/2

− sin(π/2)
= −eπ/2.

16.2.2 All Singularities and Infinity

Let us start with an example that f(z) =
3 + i

z(z + i)
=

1

z
+

2

z + i
by partial fraction. Therefore,

if Γ is a contour containing all the singularities inside,∫
Γ
f = 2πi(1 + 2) = 6πi .

Now, as Γ contains all the singularities, it can be replaced by a circle C of larger and larger

radius (left picture below). When drawn on the sphere by stereographic projection, this large

circle becomes a small circle surrounding the north pole (center picture below).

Γ

Γ

C

γ
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Note that the mapping w = 1/z invert the positions of 0 and ∞ (south and north pole).

Then C becomes a negative oriented small circle γ around the origin (right picture above).

Mathematically,

f(z) =
3z + i

z(z + i)
=

3/w + i
1
w

(
1
w + i

) =
w(3 + iw)

1 + iw
.

Apparently, in w-plane, f has only a singularity −i, which is clearly the image of i under

w = 1/z. And the mapping sends 0 to ∞. However, when we do the integral, there will be one

more singularity 0, which is the original ∞ under w = 1/z.∫
Γ
f(z) dz =

∫
Γ

w(3 + iw)

1 + iw
d

(
1

w

)
=

∫
γ

w(3 + iw)

1 + iw
· −1

w2
dw

=

∫
γ

−(3 + iw)

w(1 + iw)
dw =

∫
γ
−
(
3

w
+

−2

w − i

)
dw

=

∫
−γ

(
3

w
+

−2

w − i

)
dw = 2πi(3) , since i is outside γ.

The above calculation shows that

Res [f(z), 0] + Res [f(z), i] = −Res

[
−1

w2
f

(
1

w

)
, 0

]
.

This phenomenon is indeed true generally and it is expressed below. It provides a method for

us to find one residue instead of residues at many singularities.

Theorem 16.12. Let f be analytic on C \ { z1, z2, . . . , zm } and Γ be a contour containing all

singularities inside. Then

m∑
k=1

Res [f(z), zk] = −Res

[
−1

w2
f

(
1

w

)
, 0

]
.

For this reason, we define Res(f,∞) = Res

[
−1

w2
f

(
1

w

)
, 0

]
. Then we can simply write∫

Γ
f(z) dz = −2πiRes(f,∞) .

Proof. Let R > 0 be a large radius such that { z1, z2, . . . , zm } ⊂ B(0, R). Then f is analytic on

the annulus A(0, R,∞) and so it has a Laurent Series with center 0, i.e.,

∞∑
k=1

a−k

zk
+

∞∑
ℓ=0

aℓz
ℓ, where a−k =

∫
C

f(ζ)

(ζ − 0)−k+1
dζ .

In particular, a−1 =
1

2πi

∫
C
f(ζ) dζ =

1

2πi

∫
Γ
f(z) dz =

m∑
k=1

Res(f, zk).

On the other hand,

f

(
1

w

)
· −1

w2
=

−1

w2
·

( ∞∑
k=1

a−k

(1/w)k
+

∞∑
ℓ=0

aℓ

(
1

w

)ℓ
)

=
−1

w2
·

( ∞∑
k=1

a−kw
k +

∞∑
ℓ=0

aℓ
wℓ

)

=
∞∑
ℓ=1

−aℓ
wℓ+2

+
−a0
w2

+
−a−1

w
−

∞∑
k=2

a−kw
k−2 .

From this we see that −a−1 = Res

[
−1

w2
f

(
1

w

)
, 0

]
= Res(f,∞). �
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