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12.1 A Zero at Denominator

Let us first recall three important results, which we will often use in this lesson.

Theorem 11.2 (Cauchy-Goursat). Let Γ be a simple closed contour with bounded complement

compoent Sb such that Γ ∪ Sb ⊂ Ω and f : Ω ⊂ C → C is analytic. Then

∫
Γ
f(z) dz = 0.

From the Cauchy-Goursat Theorem, we are able to further derive two useful theorems.

Theorem 11.4. Let Γ0,Γ1, . . . ,Γp are positive oriented simple closed contours such that Γ1, . . . ,Γp

all lie in the bounded complement component of Γ0 and B ⊂ Ω is the region such that ∂B =

Γ0 ∪ (−Γ1) ∪ · · · ∪ (−Γp). If f is analytic on the domain Ω, then∫
Γ0

f(z) dz =

p∑
k=1

∫
Γk

f(z) dz .

Theorem 11.5 (Invariance of Deformation). If Γ1 and Γ2 can be deformed smoothly to each

other through a region B ⊂ Ω where f is analytic on Ω, then

∫
Γ1

f(z) dz =

∫
Γ2

f(z) dz.

12.1.1 The Zero is Simple

It has been seen that for the integral

∫
Γ
g(z) dz where g is a rational function, one may use

partial fraction to break down g and consider integrands of the form
A

z − z0
. However, the

integrand may not be a rational function. Examples below are slightly more complicated than

rational functions,

sin z

z(z − 1)
=

− sin z

z
+

sin z

z − 1
,

ez

z2 − 1
=

−ez/2

z + 1
+

ez/2

z − 1
.

Thus, the aim of this section is to deal with the integrals of the form

∫
Γ

f(z)

z − z0
dz.

Theorem 12.1 (Cauchy Integral Formula). Let f : Ω ⊂ C → C be analytic and Γ be a simple

closed contour with bounded complement component Sb ⊂ Ω. Then, for z0 ∈ C \ Γ,∫
Γ

f(z)

z − z0
dz =

{
0 z0 ̸∈ Sb ∪ Γ ,

2πif(z0) z0 ∈ Sb .

If z0 ̸∈ Sb then clearly
f(z)

z − z0
is analytic on Ω and we can simply apply the Cauchy-Goursat

Theorem to get

∫
Γ

f(z)

z − z0
dz = 0.



Let z0 ∈ Sb and Cδ be a circle with center z0 and a small radius δ > 0. Then, the integrand is

analytic on the region between Cδ and Γ. By either Invariance of Deformation or Theorem 11.4,

one has ∫
Γ

f(z)

z − z0
dz =

∫
Cδ

f(z)

z − z0
dz =

∫
Cδ

f(z0)

z − z0
dz +

∫
Cδ

f(z)− f(z0)

z − z0
dz

= 2πif(z0) +

∫
Cδ

f(z)− f(z0)

z − z0
dz .

On the other hand, f is differentiable at z0, thus for each ε > 0, there is δ > 0 such that∣∣∣∣f(z)− f(z0)

z − z0
− f ′(z0)

∣∣∣∣ < ε .

By taking a sufficiently small radius δ > 0, the last integral above is controlled by∣∣∣∣∫
Cδ

f(z)− f(z0)

z − z0
dz

∣∣∣∣ ≤ ∫
Cδ

(∣∣f ′(z0)
∣∣+ ε

)
|dz| ≤ 2πε

(∣∣f ′(z0)
∣∣+ ε

)
.

Since ε is arbitrary, we have∫
Cδ

f(z)− f(z0)

z − z0
dz = 0, and so

∫
Γ

f(z)

z − z0
dz = 2πif(z0) .

12.1.2 Intuition from Examples

Before we go on to further theories, let us look at more examples and get some feeling.

Example 12.2. Consider

∫
Γ

f(z)

z − 1
dz where Γ is simple closed positively oriented with z0 = 1

in its bounded complement and f(z) = z3 − z2 − 2z + 5.

We may use the Cauchy Integral Formula and get the answer 2πif(1) = 6πi. Or, we may work

out the partial fraction and take a small circle C at center z0 = 1,

f(z)

z − 1
= z2 − 2 +

3

z − 1
thus

∫
Γ

f(z)

z − 1
dz = 0 +

∫
C

3

z − 1
dz = 6πi . (12.2)

Example 12.3. Let us change the problem to

∫
Γ

f(z)

(z − 1)2
dz where Γ and f are the same.

Now, the Cauchy Integral Formula does not work in this case! Of course, we may still work by

the partial fraction

f(z)

(z − 1)2
= z + 1 +

−z + 4

(z − 1)2
= z + 1 +

−1

z − 1
+

3

(z − 1)2
. (12.3)

Then, we may take a small circle C with center z0 = 1 to have∫
Γ

f(z)

(z − 1)2
dz = 0 +

∫
C

−1

z − 1
dz +

∫
C

3

(z − 1)2
dz = 0− 2πi+ 0 .

Unfortunately, this method of partial fraction does not work for non-polynomial analytic

function f(z). But, we may see some hint by re-writing Equations (12.2) and (12.3).

Thomas Au MATH2230A • Notes 12: Cauchy Integral Formulas • 2



For f(z) = z3 − z2 − 2z + 5, we have

f(z)

z − 1
= z2 − 1 +

3

z − 1
= (z − 1)2 + 2(z − 1)− 1 +

3

z − 1
f(z)

(z − 1)2
= z + 1 +

−1

z − 1
+

3

(z − 1)2
= (z − 1) + 2 +

−1

z − 1
+

3

(z − 1)2
.

From the above, for a general analytic function f(z) in a neighborhood of z0, if we have a Taylor

Series (which is NOT known yet, just use as example)

f(z) = c0 + c1(z − z0) + c2(z − z0)
2 + · · ·+ cn(z − z0)

n + · · · · · · ,

Then, under reasonable convergence conditions,

f(z)

(z − z0)n+1
=

c0
(z − z0)n+1

+ · · ·+ cn
z − z0

+ cn+1 + positive powers of (z − z0).

So we may replace Γ by a small circle with center z0 to have,∫
Γ

f(z)

(z − z0)n+1
dz =

∫
C

f(z)

(z − z0)n+1
dz = 2πi cn .

The Cauchy Integral Formula in Theorem 12.1 is the same as the above by observing c0 = f(z0).

If the above is true, the value of cn provides the crucial result. Unfortunately, the argument

above is not valid because we do not know whether f (n)(z0) exist for n ≥ 2 and we are not

sure if the Taylor Series converges to the original function. The rigorous proof goes in another

direction.

12.2 The Formula

We have seen the intuition above, therefore, we expect the following result.

Theorem 12.4 (Cauchy Integral Formula). Let Γ be a simple closed contour with bounded

complement component Sb; f be analytic on a domain Ω ⊃ Γ ∪ Sb. Then for 0 ≤ n ∈ Z,∫
Γ

f(z)

(z − z0)n+1
dz =

 0 z0 ̸∈ Sb ,

2πi
f (n)(z0)

n!
z0 ∈ Sb .

Idea of Proof. We will omit the technical steps and focus on the idea. This will let us see the

power of the theorem.

We only need to deal with the case that z0 ∈ Sb. Let us choose a radius η > 0 such that the ball

B(z0, η) ⊂ Sb and a circle Cδ with center z0 and radius δ < η. For any z ∈ B(z0, δ), by Cauchy

Integral Formula in Theorem 12.1 (replacing z0 by z and integrating wrt ζ), we have

f(z) =
1

2πi

∫
Cδ

f(ζ)

ζ − z
dζ .

It can be proved that we can differentiate wrt z on both sides again and again to have,

f ′(z) =
1

2πi

∫
Cδ

d

dz

[
f(ζ)

ζ − z

]
dζ =

1

2πi

∫
Cδ

f(ζ)

(ζ − z)2
dζ ,

f ′′(z) =
1

2πi

∫
Cδ

2 f(ζ)

(ζ − z)3
dζ ,

f (n)(z) =
1

2πi

∫
Cδ

n! f(ζ)

(ζ − z)n+1
dζ . (12.4)
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In the last line (12.4) above, since the only singularity in the integrand is z ∈ Sb, integration

over the contours Γ and Cδ will give the same result,

f (n)(z) =
1

2πi

∫
Cδ

n! f(ζ)

(ζ − z)n+1
dζ =

1

2πi

∫
Γ

n! f(ζ)

(ζ − z)n+1
dζ .

In particular, this is true for z = z0 and the result is proved. �

Note that in the proof, in order to obtain the result that∫
Cδ

f(ζ)

(ζ − z)n+1
dζ = 2πi

f (n)(z)

n!
,

one only needs to assume that f is analytic on B(z0, η) and |z − z0| < δ < η. We can conclude

the following surprising fact.

Theorem 12.5. If f is analytic on B(z0, η) for some η > 0, then f ′, f ′′, · · · , f (n) exist for all

0 ≤ n ∈ Z and are analytic on B(z0, δ) for all δ < η. Consequently, if f is analytic on a

domain Ω, then f (n) exists and is analytic on Ω for all 0 ≤ n ∈ Z.

Remark. In the proof, we have omitted the technical step of
d

dz

∫
Cδ

g(ζ, z) dζ =

∫
Cδ

∂

∂z
g(ζ, z) dζ.

This is basically due to that g(ζ, z) is bounded for ζ ∈ Cδ and in the calculation of

lim
∆z→0

1

∆z

∫
Cδ

[ g(ζ, z +∆z)− g(ζ, z) ] dζ ,

the term ∆z will be cancelled away.

To this point, we have completed the dotted implications in the diagram of the previous notes.

12.2.1 Average of the Neighbors

Let us re-visit the integral formula and try to view it from the perspective of direct calculation

f(z0) =
1

2πi

∫
Cδ

f(z)

z − z0
dz =

1

2πi

∫ 2π

0

f(z0 + δeiθ)

z0 + δeiθ − z0

(
δieiθ

)
dθ =

1

2π

∫ 2π

0
f(z0 + δeiθ) dθ .

Intuitively, it means that the value of a central point z0 equals the average value of a small circle

(of arbitrary radius) around it. This equation is true on the real u and imaginary v parts of an

analytic function. Thus it can also be concluded on harmonic functions.

Theorem 12.6 (Mean Value Property). If f is analytic or u is harmonic in a ball B(z0, η),

then for all δ < η,

f(z0) =
1

2π

∫ 2π

0
f(z0 + δeiθ) dθ or u(z0) =

1

2π

∫ 2π

0
u(z0 + δeiθ) dθ .

The situation of a harmonic function can be figuratively described below.

average height
of its surrounding

z 0
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