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11.1 Zero Integral on Closed Contour

We continue to discuss the situations where

∫
Γ
f = 0 for a closed (usually simple) contour.

Previously, we have two conditions; each one is sufficient to guarantee a zero integral.

F ′(z) = f(z) for z ∈ Ω and Ω ⊃ Γ. (∗∗)

f is of C1 and satisfies Cauchy-Riemann on Ω; also Γ ∪ Sb ⊂ Ω, (††)

Let us focus on the second one (††). At the beginning, we know that there is a close relation

between complex differentiability and Cauchy-Riemann Equations.

z 0

exists

in Ω

f’ (    )z 0

atf is C 1 z 0

f satisfies

Cauchy-Riemann Equations

at in Ωz 0

The interesting and surprising part about complex functions is that the above diagram will be

changed when it is true at every point z0 ∈ Ω. And the proof indeed goes through contour

integration. More precisely, the dotted implications in the diagram below can be proved.

Closed contour

together with its

inside contained in

Γ

Ω

Contour integral = 0

1is Cf

On the domain

Cauchy (Green)

Goursat

i.e., analytic
Ωf’ z(  ) exists on

Cauchy-Riemann Equations

Ω
and satisfies

In this lesson, we will discuss the proof of Goursat. It involves very detail estimate and ε-δ

argument. One is encouraged to understand the overall logic flow before studying the analysis.



11.1.1 Integrating analytic functions

Let us first understand the situation when the integrand f is analytic. Near a point z0, we have

f(z) = f(z0) + f ′(z0)(z − z0) + (small error), lim
z→z0

small error

z − z0
= 0 .

Its integral along a small contour γ around z0 is given by∫
γ
f = f(z0)

∫
γ
dz + f ′(z0)

∫
γ
(z − z0) dz +

∫
γ
(small error) dz =

∫
γ
(small error) dz ,

because of existence of antiderivatives for the first two integrals. Thus, (small error) is the

crucial content and we also expect that the third integral is small. In the example below, we

will investigate the situation of integrating a (small error) along a contour in a small region. For

this, we will use the notation

(small error) = η0(z) (z − z0) , where lim
z→z0

η0(z) = 0 .

Example 11.1. In this example, we deal with two cases of contours that occur over a small

region. The first case is the contour ∂� = (σ1, σ2, σ3, σ4) formed by the four sides of a square �
with center z0 and side length 2δ (left hand picture). The second case is a contour Γ0 with an

arc γ inside � and some parts σ1, . . . , σ4 along the sides of � (right hand picture).

σ 12δ

4

γ

σ

1σ2δ

Let η be a function as above, i.e., defined on an open set containing � ∪ ∂� with |η(z)| ≤ ε for

all z ∈ � ∪ ∂�. We are going to give an upper bound for the integrals of the above two cases,

namely,

∫
∂�

η(z)(z − z0) dz and

∫
Γ0

η(z)(z − z0) dz.

Since σ1 is from z0 + δ(1− i) to z0 + δ(1 + i), it can be parametrized by

z(t) = (1− t) [z0 + δ(1− i)] + t [z0 + δ(1 + i)] , t ∈ [0, 1] .

We have z′(t) = δ(1 + i)− δ(1− i) = 2δi. Together with |η(z(t))| ≤ ε, we have∣∣∣∣∫
σ1

η(z)(z − z0) dz

∣∣∣∣ ≤ ∫ 1

0
|η(z(t))| · |z(1)− z(0)| · |2δi| dt

≤
∫ 1

0
ε · (

√
2δ) · (2δ) dt = 2

√
2δ2ε .

Thus

∣∣∣∣∫
∂�

η(z)(z − z0) dz

∣∣∣∣ ≤ 8
√
2δ2ε = 2

√
2Area(�)ε.
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The contour Γ0 may almost include all four sides ∂� of the square and a curve γ inside the

square �. Then,∣∣∣∣∫
Γ0

η(z)(z − z0) dz

∣∣∣∣ ≤ 4∑
k=1

∣∣∣∣∫
σk

η(z)(z − z0) dz

∣∣∣∣+ ∣∣∣∣∫
γ
η(z)(z − z0) dz

∣∣∣∣
≤ 2

√
2Area(�)ε+ ε

∫
γ
|(z − z0) dz|

≤ 2
√
2Area(�)ε+

√
2δ Length (γ) ε .

11.1.2 Cauchy-Goursat

Theorem 11.2. Let Γ be a simple closed contour with bounded complement component Sb such

that Γ ∪ Sb ⊂ Ω and f : Ω ⊂ C → C is analytic. Then

∫
Γ
f = 0.

The result of Example 11.1 is very useful in understanding the proof of the theorem. We are

going to divide Γ ∪ Sb into small squares �k of side length 2δ as shown in the figure below.

kz 2δ

Given any ε > 0, by the analyticity of f on Ω, there exists a suitable δ > 0 (the compactness of

Γ ∪ Sb is needed) such that if z0 ∈ Γ ∪ Sb and z ∈ Ω with |z − z0| <
√
2δ, then

f(z) = f(z0) + f ′(z0)(z − z0) + η0(z) (z − z0) where |η0(z)| ≤ ε .

Further reduce δ to be small enough such that there is a subset K such that Γ ∪ Sb ⊂ K ⊂ Ω.

The set K is a union of squares �k, k = 1, . . . , N , such that each �k either lies in Sb completely

(case 1 in Example 11.1) or intersects Γ (case 2 above). Denote γk = �k ∩ Γ, which plays the

role of γ in Example 11.1.

Γ K

It can be easily observed that

N∑
k=1

∫
∂�k

f(z) dz =

∫
∂K

f(z) dz ̸=
∫
Γ
f(z) dz .
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By the argument of the Example 11.1 (note that γk = ∅ if �k ⊂ Sb),∣∣∣∣∫
Γ
f(z) dz

∣∣∣∣ ≤ N∑
k=1

∣∣∣∣∣
∫
(∂�k,γk)

f(z) dz

∣∣∣∣∣ =
N∑
k=1

∣∣∣∣∣
∫
(∂�k,γk)

ηk(z) (z − zk) dz

∣∣∣∣∣
≤

N∑
k=1

∣∣∣∣∫
∂�k

ηk(z) (z − zk) dz

∣∣∣∣+ ∣∣∣∣∫
γk

ηk(z) (z − zk) dz

∣∣∣∣
≤

N∑
k=1

[
2
√
2Area(�k)ε+

√
2δ Length (γk) ε

]
≤

√
2 [ 2Area(K) + Length (∂K) Length (Γ) ] ε

≤
√
2
[
4Area(Sb) + 2Length (Γ)2

]
ε .

Since ε > 0 is arbitrary, we have

∣∣∣∣∫
Γ
f(z) dz

∣∣∣∣ = 0.

11.2 Further Results

In the statement of Cauchy-Goursat Theorem, the contour is simple closed. However, the result

is useful in many other situations. Furthermore, the statement apparently is about analytic

functions, it actually is often used on integrand that are not analytic.

Example 11.3. Let Γ1 be a circle of center 0 and radius R; Γ2 be the contour as shown.

1

Γ2

Γ

What are

∫
Γ1

g and

∫
Γ2

g in the cases that g(z) = 1/z3 or g(z) = 1/z?

Since Γ1 can be explicitly parametrized by Reit for t ∈ [0, 2π], we may directly calculate that∫
Γ1

1

z3
dz = 0 and

∫
Γ1

1

z
dz = 2πi .

Without explicit parametrization for Γ2, can we use Cauchy-Goursat Theorem to get the result?

The answer is no; because for both Γ1 and Γ2, the bounded complement component Sb contains 0

and thus g is not analytic on Γ ∪ Sb. Still, we have∫
Γ2

1

z3
dz = 0 because g(z) = 1/z3 has an antiderivative on C \ {0} ⊃ Γ2.

Obviously, for g(z) = 1/z, it does not have an antiderivative on C \ {0}, one must look for

another method. Let γ be a curve (not necessarily straight) joining Γ1 and Γ2.
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Γ 1

Γ2γ

1

Γ2
γ

Γ S b

Then the contour Γ = (−Γ1, γ,Γ2,−γ) actually satisfies ∂Sb = Γ. Moreover, the proof of

Cauchy-Goursat Theorem is still valid in such a situation. Therefore, we have

0 =

∫
Γ
f(z) dz =

∫
Γ2

f +

∫
γ
f −

∫
γ
f −

∫
Γ1

f, and thus

∫
Γ2

1

z
dz =

∫
Γ1

1

z
dz = 2πi .

11.2.1 Regions with Holes

As in Example 11.3 above, we always need to deal with functions that are not completely

analytic. Thus, it is convenient to have a more general version of Cauchy-Goursat Theorem.

Let Γ0 be a simple closed contour and Γ1, . . . ,Γp be simple closed contours contained in the

bounded complement component of Γ0 (see an illustration below).

01Γ

2Γ 3Γ

B

Γ

Let Sb,0, Sb,1, . . . , Sb,p be the bounded complement components of Γ0,Γ1, . . . ,Γp respectively.

Then B = Sb,0
∩p

k=1 (C \ Sb,k) is the region between the contours.

Theorem 11.4. In the setting above, let Γ0 and all Γk, k = 1, . . . , p be positively oriented. If

f : Ω ⊂ C → C is analytic on a domain Ω ⊃ B, then∫
Γ0

f =

p∑
k=1

∫
Γk

f .

Idea of Proof. Add short arcs γ1, . . . , γp to connect each contour Γk from Γ0 and then use the

argument of Example 11.3. �

Remark. Note that if all the Γ1, . . . ,Γp take negative orientation, then their normals will behave

the same as the normal of Γ0 to point towards B. Corresponding to the above picture, this is

written as

∂B = Γ0 ∪ (−Γ1) ∪ · · · ∪ (−Γp) .

The situation of Example 11.3 is often expressed in the following form.
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Theorem 11.5 (Invariance of Deformation). If Γ1 and Γ2 can be deformed smoothly to each

other through a region B where f is analytic, then∫
Γ1

f =

∫
Γ2

f .

2Γ

B

1Γ

The function f may not be analytic at many places. However, as long as it is analytic on the

yellow region between the two contours, its integrals along the contours are the same.

Example 11.6. Let us consider the rational function g(z) =
z3 + z2 + z − 2

z2 − z
. It is clearly

analytic on C \ {0, 1}. The first observation is that the numerator is of degree 3 while the

denominator of degree 2. We may use long division to get

g(z) = z + 2 +
3z − 2

z2 − z
.

Thus, for any closed contour Γ, we can use Cauchy-Goursat Theorem to have∫
Γ
g(z) dz =

∫
Γ
(z + 2) dz +

∫
Γ

3z − 2

z2 − z
dz = 0 +

∫
Γ

3z − 2

z2 − z
dz .

This illustrates that we can always throw away the analytic part of a function when doing

integral along a closed contour. Next, we will use partial fraction to have∫
Γ
g(z) dz =

∫
Γ

3z − 2

z2 − z
dz =

∫
Γ

(
2

z
+

1

z − 1

)
dz .

For the following contours, we are able to reduce the calculation to the special contours C0

and C1, which are circles at centers 0 and 1 respectively. The radii of the circles are not

important. We assume all contours are positively oriented

1CC1 C0

3Γ
Γ2

Γ1

By Invariance of Deformation, g is analytic on the region between Γ1 and C1, so∫
Γ1

g(z) dz =

∫
C1

g(z) dz =

∫
C1

2

z
dz +

∫
C1

1

z − 1
dz .
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Note that the integrand 2/z is analytic on and inside C1, therefore

∫
C1

2

z
dz = 0. Moreover, by

the parametrization C1 by z(t) = 1+Reit, t ∈ [0, 2π], we may calculate that

∫
C1

1

z − 1
dz = 2πi.

Similarly, we have ∫
Γ2

g(z) dz = 4πi+ 2πi = 6πi .

For the contour Γ3, we have to break it into simple closed contours and obtain the answer 2πi.

This example is easy because it is a fraction of two polynomial. What if g(z) =
sin z

z2 − z
? We

can certainly use partial fraction to have g(z) =

(
−1

z
+

1

z − 1

)
sin z. From this, we see a major

concern in finding contour integral, namely, the integrand is of the form

g(z) =
f(z)

z − z0
where f is an analytic function.

This will be our next topic.
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