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Notes 9 Contour Integration

9.1 Contour Integral

Previously, we have learned how to find the harmonic conjugate of a given harmonic function

u(x, y). In other words, we would like to find v(x, y) such that u+iv defines an analytic function.

The process is to use the Cauchy-Riemann Equations successively. For example, we start with

vy = ux = this is known as u is given,

and obtain

v =

∫
ux dy + φ(x) .

Then, we use vx = −uy to get information about φ′(x). Next, integrating wrt x will get the

result. Observing from both analytically and geometrically, we see that the process corresponds

to an integration along the vertical and then horizontal line in the picture below.

Sometimes, in order to avoid holes in the domain Ω where u is defined, we may need to take

more vertical and horizontal lines (dotted in picture). Nevertheless, one may expect the general

theory should be related to integration along a curve.

9.1.1 Contours and Integrals

Let us start with the building block of a contour. A smooth path γ in Ω ⊂ C is a continuous

function γ : [a, b] → Ω from an interval with γ(t) = x(t) + iy(t) such that x′(t) and y′(t) exist

and are continuous for all t ∈ (a, b). The function γ is called a parametrization of the path. It

determines a “direction” for the path. We denote γ′(t) = x′(t) + iy′(t). The parametrization is

regular if γ′(t) ̸= 0 for all t ∈ (a, b).

Example 9.1. Typical examples are

• Straight line joining z0, z1 ∈ C: t ∈ [0, 1] 7→ (1− t)z0 + tz1.

• Circle with center z0 and radius R: t ∈ [0, 2π] 7→ z0 +Reit.



• Same circle but going clockwise and different end-points: t ∈ [−π, π] 7→ z0 +Re−it.

A smooth arc is closed if the end-points are the same, i.e., γ(a) = γ(b). It is simple if γ is

one-one on [a, b) and (a, b], i.e., no self-intersection except at the end points.

Not simple Simple closedNot simple not closed

Example 9.2. A curve with a sharp point may have a differentiable parametrization, but such

parametrization is not regular. Try to give a differentiable parametrization for the following

curve defined by y2 = x3.

A contour Γ = (γ1, γ2, . . . , γn) in Ω ⊂ C consists of finitely many smooth arcs γ1, . . . , γn such

that the terminal point of γk is the starting point of γk+1 for k = 1, . . . , n− 1.

Γ

Let γ : [a, b] → Ω ⊂ C be a smooth arc and f : Ω → C, i.e., the domain of f contains the arc.

The contour integral of a continuous function f along γ is denoted and defined by∫
γ
f or

∫
γ
f(z) dz

def
:==

∫ b

a
f(γ(t)) · γ′(t) dt

=

∫ b

a
f(x(t) + iy(t))

(
x′(t) + iy′(t)

)
dt

def
:==

(
A real integral of
the real part wrt t

)
+ i

(
A real integral of

the imaginary part wrt t

)
For a general contour Γ = (γ1, γ2, . . . , γn), we define∫

Γ
f

def
:==

n∑
k=1

∫
γk

f .

Thomas Au MATH2230A • Notes 9: Contour Integration • 2



Example 9.3. Let f(z) = z+1 and γ be the straight line from −1 to 1+ i, i.e., γ(t) = 2t−1+ it

for t ∈ [0, 1]. Then∫
γ
f =

∫ 1

0
(2t− 1 + it+ 1) · (2 + i) dt =

∫ 1

0
3t dt+

∫ 1

0
4ti dt .

Example 9.4. Let f(z) = z and γ be the semi-circle with center 0, radius R, counter-clockwise

from −Ri to Ri. Then γ(t) = Reit for t ∈
[−π

2 , π2
]
and∫

γ
f(z) dz =

∫ π/2

−π/2
(Reit) ·Rieit dt = πR2i .

Example 9.5. This is a case that commonly occurs, in which the integrand is a multi-valued

functions. Let f(z) = z1/2 and γ be the semi-circle with center 0, radius R, counter-clockwise

from R to −R. First, we may parametrize the curve by γ(t) = Reit for t ∈ [0, π].

Since f(z) = z1/2 = e
1
2
log z is indeed a set, we have to choose a branch of it which is defined

on γ. For this, let α = −π/2 and take the branch exp
(
1
2 Logα z

)
on C \Hα.

R-R

Then, Logα γ(t) = Logα
(
Reit

)
= lnR + iArgα

(
Reit

)
= lnR + it. Warning. This calculation

depends on α (the choice of branch of log z) and also the parametrization. See the remark below

for more discussion.

In our case, using the cut and the branch of log z at α = −π/2, we have∫
γ
f

def
:==

∫ π

0
f
(
Reit

)
·Rieit dt = · · · · · · = R3/2

∫ π

0
ie3it/2 dt

= R3/2

[ ∫ π

0

(
− sin

3t

2

)
dt + i

∫ π

0
cos

3t

2
dt

]
= · · · · · · =

−2

3
R3/2(1 + i) .

Remark . In the calculation of Logα γ(t) above, there are several complications. First, at the

same cut of the negative imaginary axis, there is a choice of α. In the above, we chose α = −π/2,

then Argα(Reit) = t. For instance, if α = 3π/2 is chosen, as a set, we have the same branch cut

at the negative imaginary axis; but Argα
(
Reit

)
= t+π because t ∈ [0, π]. The parameter t also

has an effect. For example, the same semi-circle may be parametrized by z(t) = −R(sin t+i cos t)

with t ∈ [−π/2, π/2]. In such a case, if we take α = −π/2, Argα(Reit) = t + π/2. Or even

worse, one may take the parametrization z(t) = −t + i
√
R2 − t2 for t ∈ [−R, 0]. In this case,

Argα(Reit) is a complicated expression in terms of t.

Exercise 9.6. Try the above by taking another branch of z1/2 or other parametrization.
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9.1.2 Fundamental Theorem, True or Not??

From the calculations in all the above examples, we see a pattern and a natural question arise.

In principle,∫
γ
f = · · · · · · =

∫ b

a
(Something in t) dt+ i

∫ b

a
(Another stuff in t) dt .

But, at the end, we inevitably used the Fundamental Theorem of Calculus to find the values of

the integrals. Can we do the contour integration faster? First of all, it is not necessary to break

it into real and imaginary parts before doing integration. In Example 9.5, we can simply write∫ π

0
ie3it/2 dt =

2

3
e3it/2

∣∣∣∣π
0

, (⋆)

because
d

dt

(
2

3
e3it/2

)
= ie3it/2. The Fundamental Theorem of Calculus for real integrals can be

used because in both the left hand side and right hand side of the equation (⋆) above, it only

involves algebraic operations to break it to real and imaginary parts.

Exercise 9.7. Write a mathematical statement that corresponds to the general situation of

equation (⋆). This statement is very easy to prove, in fact, trivial.

More importantly, one would ask whether we can get the answer directly from the integrand f(z)

and the arc γ. It seems that it is possible for Examples 9.3 and 9.5, but not so obvious for 9.4,

though in Example 9.5, there are four possibilities to pick the answer.

(9.3)

∫
γ
f =

z2

2
+ z

∣∣∣∣1+i

−1

=
3

2
+ 2i;

(9.5)

∫
γ
f =

2

3
z3/2

∣∣∣∣−R

R

=
−2

3
R3/2

[
(1)3/2 − (−1)3/2

]
.

Apparently, there is a certain version of Fundamental Theorem of Calculus if the integrand f is

good enough.

9.2 Antiderivatives

Given a function f : Ω ⊂ C → C and a contour Γ ⊂ Ω. A function F : Ω → C is called an

antiderivative of f in Ω if F ′(z) = f(z) for all z ∈ Ω. Note that there is almost no requirement

on the domain Ω. It may have holes and only needs to contain the contour Γ.
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Theorem 9.8. If Γ is a contour in Ω from the point z0 to z1 and f has an antiderivative F

in Ω, then ∫
Γ
f = F (z1)− F (z0) .

The main idea of the proof is changing of variables in integration. Let f = u+ iv and Γ can be

parametrized by t ∈ [a, b] 7→ z(t) = x(t) + iy(t). In addition, we have F = P + iQ and F ′ = f .

For simplicity, we only write u instead of u(x(t), y(t)) for the real part of the composite f ◦ Γ
and similarly for v, P,Q. Then

Real part of

∫
Γ
f = Re

(∫ b

a
f ◦ Γ(t) · Γ′(t) dt

)
=

∫ b

a

(
u · x′(t)− v · y′(t)

)
dt

=

∫ b

a

(
Px · x′(t)−Qx · y′(t)

)
dt =

∫ b

a

(
Px · x′(t) + Py · y′(t)

)
dt

=

∫ b

a

d

dt
[P ◦ Γ(t)] dt = P ◦ Γ(b)− P ◦ Γ(a) = P (z1)− P (z0) .

The situation for the imaginary part is similar.

From this theorem, whenever there is an antiderivative of the integrand f on an open set

containing the contour, we can have something similar to Fundamental Theorem of Calculus.

The contour integral only depends on the two end-points, but not the contour itself.

Corollary 9.9. Let f, F : Ω ⊂ C → C and F ′(z) = f(z) for all z ∈ Ω.

1. If Γ1,Γ2 ⊂ Ω are two contours with the same end-points, then∫
Γ1

f =

∫
Γ2

f .

2. If Γ ⊂ Ω is a closed contour, then

∫
Γ
f = 0.

Let us emphasize that the domain Ω may have holes in this case and the contour Γ may have

self-intersections. There will be another similar but different theorem later.

Let us look at some examples to understand more.

Example 9.10. Let γ be the circle with center 0 and radius R in counterclockwise direction,

i.e., γ(t) = Reit for t ∈ [0, 2π] and f(z) = 1/z2. By direct calculation,∫
γ
f =

∫ 2π

0

1

R2e2it
·Rieit dt =

i

R

∫ 2π

0
e−it dt =

i

R

(
−ie−it

)∣∣∣∣2π
0

= 0 .

The result is consistent with Corollary 9.9 by taking Ω = C \ {0}.

Example 9.11. What if we take the same circle but f(z) = 1/z instead? Again, by direct

calculation, ∫
γ
f =

∫ 2π

0

1

Reit
·Rieit dt = i

∫ 2π

0
1 dt = 2πi ̸= 0 .

Why is not Corollary 9.9 applicable to this integral? Also, observe that the answer does not

depend on the radius of the circle.
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As a matter of fact, we may use similar method as in Example 9.10 to conclude that∫
γ
zn dz =

{
0 n ̸= −1 ,

2πi n = −1 .

For any n < 0, disregard of whether n = −1 or n ≤ −2, the function f(z) = zn is not defined at

the origin 0. Therefore, in both situations, the circle γ is contained in Ω = C \ {0}. The crucial

difference is the antiderivative. We expect that if F ′(z) = f(z), then

F (z) =

{
1

n+1z
n+1 n ̸= −1 ,

log(z) n = −1 .

The antiderivative F (z) = zn+1/(n+1) is defined and continous on Ω = C \ {0}. However, log z

is only a set and one must choose a branch of it. None of the branches is continuous on C \ {0}.
In order to take a continuous branch of log z, we need to delete a half-line in C and any half-line

intersects the circle with center 0.

Exercise 9.12. Prove that if γ is the circle { z ∈ C : |z − z0| } = R where R < |z0|, then∫
γ

1

z
dz = 0 .

Exercise 9.13. Let Γ = (γr, γℓ) where γr is the right half semi-circle from −Ri to Ri, while γℓ

is the left half from Ri to −Ri. Show by using Theorem 9.8 (without direct calculation) that∫
Γ

1

z
dz = 2πi .
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