THE CHINESE UNIVERSITY OF HONG KONG
 Department of Mathematics
 MATH2230A (First term, 2015-2016)
 Complex Variables and Applications
 Notes 7 Logarithm

7.1 Inverse to Exponential

We all know that for real variable, e^{x} and $\ln x$ are inverses to each other. They are important in analysis. So, we are going to discuss analogue in complex. Let us consider the situation below.

$$
e^{w}=z=x+\mathbf{i} y \in \mathbb{C} \backslash\{0\} \stackrel{\longleftarrow}{\longleftarrow} \quad w=u+\mathbf{i} v \in \mathbb{C} .
$$

The expression of the solid arrow is given, that is, $x=e^{u} \cos v$ and $y=e^{u} \sin v$. Analytically, to find the inverse of $w \mapsto \exp (w)$ is really re-arranging the equations and changing the subjects to u, v in terms of x, y. The first step is easy,

$$
x^{2}+y^{2}=e^{2 u}, \quad \text { thus } \quad u=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)=\ln \sqrt{x^{2}+y^{2}}=\ln |z| .
$$

The step about v is not that simple, we have

$$
\cos v=\frac{x}{e^{u}}=\frac{x}{|z|}, \quad \sin v=\frac{y}{|z|} .
$$

First, there is not a single formula for v. Moreover, for each z, there are infinitely many solutions for v with each pair differs by a multiple of 2π. This is expected because $w \mapsto \exp (w)$ is not a 1-1 function and it should not have a single inverse function. Nevertheless, we have an expression for u and a set to describe v, namely,

$$
u=\ln |z|, \quad v \in\left\{\theta \in \mathbb{R}: \quad \cos \theta=\frac{x}{|z|}, \sin \theta=\frac{y}{|z|}\right\} .
$$

7.1.1 Argument

From the above, we see that given $z=x+\mathbf{i} y \in \mathbb{C} \backslash\{0\}$, an important set is associated to z,

$$
\arg z: \xlongequal{\text { def }}\left\{\theta \in \mathbb{R}: \quad \cos \theta=\frac{x}{|z|}, \sin \theta=\frac{y}{|z|}\right\} .
$$

It is called the argument of z. Each pair of elements in $\arg z$ differs by a multiple of 2π. In addition to this set, we define the principal argument by the unique element in the intersection,

$$
\operatorname{Arg} z \in(\arg z) \cap(-\pi, \pi] .
$$

There are pros and cons for both $\arg (z)$ and $\operatorname{Arg}(z)$. For example, $z \mapsto \operatorname{Arg}(z)$ is a continuous function on a suitable domain. However, we have good properties such as

$$
\arg \left(z_{1} z_{2}\right)=\arg \left(z_{1}\right)+\arg \left(z_{2}\right), \text { etc. },
$$

which is no longer true for $\operatorname{Arg}(z)$.

7.1.2 Set of Inverses to Exponential

After introducing the set $\arg (z)$, there is a way to write the above result. Though it is not an inverse function to $w \mapsto \exp (w)$, it resembles the situation. Let $z=x+\mathbf{i} y$ and $w=u+\mathbf{i} v$ such that $z=e^{w}$. Then, we may write

$$
\log z: \xlongequal{\text { def }} \ln |z|+\mathbf{i} \arg (z) \subset \mathbb{C} .
$$

For any $z \in \mathbb{C} \backslash\{0\}, \log (z)$ is a set containing complex numbers with a fixed real part and each imaginary part is picked from the set $\arg (z)$. As a consequence, if $w \in \log (z)$ then $e^{w}=z$. On the other hand, if $w \in \mathbb{C}$, then the set $\log \left(e^{w}\right)=\{w\}$. Thus, the set $\log (z)$ plays a role similar to an inverse function. In some classical book, $\log (z)$ is called a multi-valued function.

7.2 Branches

In many situation, it is better to have a function to work on. The most common one is the principal logarithm,

$$
\log z: \xlongequal{\text { def }} \ln |z|+\mathbf{i} \operatorname{Arg}(z) \in \log z .
$$

Here, $\log z$ is no longer a set, but the value is a complex number in the set $\log (z)$. Apparently, it is defined for all $z \neq 0$. But then the function $z \mapsto \log z$ is not continuous and it is undesirable. Let us consider the more general case, which is sometimes more convenient, depending on the context. Let $\alpha \in \mathbb{R}$ be a fixed number. Then

$$
\log _{\alpha} z: \xlongequal{\text { def }} \ln |z|+\mathbf{i} \operatorname{Arg}_{\alpha}(z), \quad \text { where } \quad \operatorname{Arg}_{\alpha}(z) \in \arg (z) \cap(\alpha, \alpha+2 \pi) .
$$

Note that the imaginary part of $\log _{\alpha}(z)$ lies in the open interval $(\alpha, \alpha+2 \pi)$ while the real part can be any real number. Then $w=\log _{\alpha}(z)$ lies in a horizontal strip $\mathbb{R} \times(\alpha, \alpha+2 \pi)$. In such a case, for w in this strip, $\exp (w) \in \mathbb{C} \backslash H_{\alpha}$ where H_{α} is a half-line given by

$$
H_{\alpha}: \xlongequal{\text { def }}\left\{r e^{\mathrm{i} \alpha}: r \geq 0\right\} .
$$

In this way, the principal $\operatorname{logarithm} \log (z)$ can be seen as $\log _{-\pi}(z)$. Each $\log _{\alpha}$ is called a branch of logarithm and it is continuous on the domain $\mathbb{C} \backslash H_{\alpha}$. In general, let $\Omega \subset \mathbb{C} \backslash\{0\}$ and $\ell: \Omega \rightarrow \mathbb{C}$ be a continuous function such that $\ell(z) \in \log (z)$ for all z, then ℓ is called a branch of $\log a r i t h m$ on Ω. It can be proved that there is no continuous branch of $\log (z)$ on $\mathbb{C} \backslash\{0\}$.

One has to be very careful when working with branches of logarithm. For example,

$$
\begin{aligned}
& \log (-\mathbf{i})^{2}=\log (-1)=\ln |-1|+\mathbf{i} \operatorname{Arg}(-1)=\mathbf{i} \pi \\
& 2 \log (-\mathbf{i})=2[\ln |-\mathbf{i}|+\mathbf{i} \operatorname{Arg}(-\mathbf{i})]=2 \mathbf{i}\left(\frac{-\pi}{2}\right)=-\mathbf{i} \pi
\end{aligned}
$$

Many equations such as $\log \left(z_{1} z_{2}\right)=\log \left(z_{1}\right)+\log \left(z_{2}\right)$ only are valid with an interpretation of sets, i.e., any element on the left will exist also on the right and vice versa.

7.2.1 Continuity implies Analyticity

Let $\ell: \Omega \subsetneq \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C}$ be a continuous branch of \log on Ω. You may think of it as $\log _{\alpha}$ for easy understanding.

THEOREM 7.1. The continuous function ℓ is automatically analytic on Ω.

Clearly, continuity normally does not upgrade to differentiability. This is a special case for logarithm because it has an inverse relationship with exponential function. Indeed, the proof can be similarly adopted to other inverse functions.
Let $z=x+\mathbf{i} y \in \Omega$ and $w=u+\mathbf{i} v=\ell(z)$. Since, $\ell(z) \in \log (z)$, we have $\exp (\ell(z))=e^{w}=z$. Thus,

$$
x=e^{u} \cos v, \quad y=e^{u} \sin v
$$

ExERCISE 7.2. Apply implicit differentiation on the above two equations, show that $u(x, y)$ and $v(x, y)$ are of C^{1} and they satisfy the Cauchy-Riemann Equations on Ω.

From the result of this exercise, one sees that $z \mapsto \ell(z)$ is analytic on Ω, in which the only condition used is that u, v are continuous. In fact, you should be able to get

$$
\frac{\partial u}{\partial x}=\frac{x}{x^{2}+y^{2}}=\frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=\frac{y}{x^{2}+y^{2}}=-\frac{\partial v}{\partial x} .
$$

Recall that if a complex function f is complex differentiable, and when it is seen as a function $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, its differential matrix is "almost orthogonal". That is, $[D f] \cdot[D f]^{T}$ is a multiple of the identity matrix. Observe from the above situation of $z \mapsto \log (z)$ and $w \mapsto e^{w}$, can you answer the following?

EXERCISE 7.3. Let $g: \Omega \rightarrow \mathbb{C}$ be an inverse function of an analytic function f such that it is continuous on Ω. Is it true that g will be automatically analytic?

