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2.1 General Principle

We are studying a continuous function f : Ω ⊂ C → C. So far, the topology (and geometry)

of C is the same as R2, it is the same as a function Ω ⊂ R2 → R2.

The key question is How to visualize or understand a function?

For a function Ω ⊂ R → R, we use the following graph,
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For a functiion Ω ⊂ R2 → R, we also use the graph.

(      )f

x, y, u

=u

(          )

x, y

x

y

z

Ω

What about the situation of f : Ω ⊂ C → C?

The general principle is that we take S ⊂ Ω and look at its image,

f(S)
def
:== { f(z) : z ∈ S } .

In fact, we do not only look at one single S, but we often look at typical sets S.

On the other hand, we also consider T ⊂ C and look at its pre-image,

f−1(T )
def
:== { z ∈ Ω : f(z) ∈ T } .

In the following, we will use some examples to illustrate this.



2.2 Example: the Square

Let us consider f : Ω = C → C where f(z) = z2. In other words, if z = x+ iy and f(z) = u+ iv,

then u = x2 − y2 and v = 2xy.

2.2.1 Easy Observations

Take a circle Sa with center at the origin and radius a > 0, i.e. Sa =
{
aeiθ : θ ∈ R

}
. Clearly,

f(Sa) =
{
a2e2iθ : θ ∈ R

}
=
{
a2eiϕ : ϕ ∈ R

}
. By taking different radii a > 0, we will have the

pictures of Sa’s and their images.
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Similarly, if one takes the radial line Rα =
{
reiα : r > 0

}
where α ∈ R, then its image is also

another radial line

f(Rα) = R2α =
{
re2iα : r > 0

}
.

However, we should be careful that f−1(R2α) ̸= Rα, in fact,

f−1(R2α) =
{
reiα : r > 0

}
∪
{
rei(α+π) : r > 0

}
= Rα ∪Rα+π .

2.2.2 Important Images

Let us start with a vertical line Va = { a+ it : t ∈ R }, a ̸= 0. What will its image look like?

The essential step is to find out how f(Va) is mathematically described in the target uv-plane.

Let f(a+ it) = u+ iv. Then u = a2 − t2 and v = 2at define a curve with parameter t ∈ R. By

eliminating the parameter t, one shows that it satisfies the equation u = a2 − v2

4a2
, which is a

parabola hitting the u-axis at a2 > 0.

Note that this is only one direction of the argument. Mathematically, we have shown f(Va) is

a subset of a parabola. We indeed need to look at the parametric equations to conclude that

f(Va) is the whole parabola and how it is oriented.

In the picture below, taking different values of a ̸= 0 gives us different parabolas. If a > 0,

the parabola should be oriented from bottom to top; while for a < 0, the parabola from top to

bottom. At a = 0, the parabola collapses to the negative axis.
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If we also consider horizontal lines in Ω = C, we have another group of parabolas.
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Note that the two groups of parabolas are perpendicular to each other. This is a special property

about functions that we will study in this course. It requires the function f : Ω ⊂ C → C to

be more than continuous. But, this orthogonality fails at the origin, which can be explained

later. Many physical situations obey such an orthogonality, for example, heat propagation and

isothermal front. This is one reason why complex functions are important in applications.

Similarly, we may consider pre-images of vertical and horizontal lines. Instead of substitution
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of z into f , this involves an inverse process, i.e., solving equations. For example, in order to find

the pre-image of a vertical line, we need to solve

x2 − y2 = c, 2xy = t, where c ∈ R is fixed and t is a parameter.

In general, each straight line will have two “branches” of pre-images. In the picture below, the

green ones are pre-images of vertical lines and the blue ones are of horizontal lines.
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2.3 Example: Sine function

Let f : Ω = C → C where f(x+ iy) = sin(x) cosh(y)− i cos(x) sinh(y). In a future chapter, you

will see that this is indeed defined to be sin(z) for z ∈ C.

Now, if we write f(x+ iy) = u+ iv, where u(x, y), v(x, y) ∈ R, we have

u(x, y) = sin(x) cosh(y), v(x, y) = − cos(x) sinh(y) .

Consider the image of Va = { a+ it : t ∈ R }. Then f(a + it) = sin(a) cosh(t) − i cos(a) sinh(t)

gives the parametric form and (u, v) satisfies the equation

u2

sin2(a)
− v2

cos2(a)
= 1, which is a pair of hyperbola.

Note that the above calculation only shows that f(Va) is a subset of the hyperbola. In fact,

from the parametric form, it should be one branch of the hyperbola.

Starting from a = 0, f(a + it) = 0 − i sinh(t) and the image f(Va) is only the y-axis. For

0 < a < π/2, f(Va) is a branch of the hyperbola with orientation going downward because

− cos(a) < 0; when a = π/2, f(a + it) = cosh(t) which only covers the interval [1,∞). Such

phenomenon is shown in the following picture.

In fact, for π/2 < a < π, we still have this picture but the orientation will go upward. Moreover,

for π < a < 2π, a similar situation occurs and f(Va) lies in the left half of the complex plane.
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By similar method, one will work out the images of horizontal lines under f , which are ellipses

orthogonal to the hyperbolas.

2.4 Example: Möbius transformation

Let us consider f : Ω = C \ {−1} → C where f(z) =
−i(z − 1)

z + 1
.

First, it is obvious that f is undefined when z = −1, so Ω = C \ {−1}. What about the range

of f? One may try to solve the equation

f(z) =
−i(z − 1)

z + 1
= w, for an arbitrary w ∈ C.

The answer is z =
1 + iw

1− iw
. So, there will be a unique solution for z except w = −i. Thus,

f : Ω → C \ {−i} is a bijection.

Apparently, it is harder to visualize the action of the function because the images of horizontal

or vertical lines are difficult to find. One can always rely on the brute force of plotting point by

point (using the computer). Let us first try the action on some typical points, 1, i,−i, which is

shown by colors in the picture.
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Let us then consider the real axis R \ {−1}, i.e., z = x ̸= −1. Clearly, f(x) is purely imaginery,

i.e., the image lies in the v-axis. Moreover, we may study the fraction −(x − 1)/(x + 1) for

different ranges of x and get the corresponding images of f(x). For example, if 0 < x < 1, then

(x− 1) < 0 and (x+ 1) > 0, so the fraction decreases from 1 to 0. As a summary, we have

x (−∞,−1) (−1, 0) (0, 1) (1,∞)

−(x− 1)

x+ 1
(−∞,−1) (1,∞) (0, 1) (−1, 0)

Thus, the image of the x-axis is found in the v-axis and shown below.

-1
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i
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f

Next, we may try to find the image of the y-axis. So, one may calculate f(iy) = u+ iv. Then,

it can be checked that u2 + v2 = 1. That is, the image of the y-axis lies in the unit circle. More

details can be observed by showing (as an exercise) that

Im (f(z)) = 0 if and only if |z| = 1.

In other words, f sends the unit circle (except z = −1) to the real axis. Moreover, by changing

the condition to |z| < 1 or > 1, you may see the image of the inside and outside of the circle is

respectively the upper and lower half-plane. These results are presented by the following picture

i

1

i

-1 1

f

-1

This example belongs to a more general class of examples called Möbius transformation or linear

fractional transformation. Such mappings takes (see p. 311–329 of Chapter 8 of the textbook)

{ circles } ∪ { st. lines } −→ { circles } ∪ { st. lines } . (∗)

Since three points determine a circle or straight line, one can always easily find the image and

pre-image of the mapping. For example, −1, 0, 1 ∈ Ω determine a straight line (the real axis),
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knowing that f(−1) = ∞, f(0) = i, and f(1) = 0, which determine the imaginary axis. One

immediately concludes that the image of the real axis is the imaginary axis.

2.4.1 General Möbius transformation

In general, a Möbius transformation on C is given by the form z 7→ az + b

cz + d
, a, b, c, d ∈ C .

It is defined on Ω = C \ {−d/c} and its range is C \ {a/c}. However, we usually formally define

that (which is consistent with the sense of taking limit)

−d

c
7→ ∞ and ∞ 7→ a

c
.

Also in Chapter 8 of the textbook, one sees that a Möbius transformation also preserves the angle

at the intersection of two circles, or of a circle with a straight line (indeed at the intersection of

any two curves). For example, in the above example, the unit circle, the real axis, the imaginary

axis are pairwisely orthogonal. Then the same situation occurs to their images, which are the

real axis, imaginery axis, and the unit circle. Knowing the properties of (∗) above and angle

preserving, one may easily obtain the images of many sets in Ω.

In the previous example, let V be a vertical straight line. We first know that f(V ) is either a

straight line or circle. If V is the vertical line at z = −1, then f(V ) contains f(−1) = ∞ so

f(V ) must also be a straight line. Moreover, V is a straight line, so we may consider ∞ ∈ V ,

then f(V ) contains f(∞) = −i. That is, f(V ) is a straight line passing through −i. Finally, V

is vertical so it intersection the real axis at right angle, then f(V ) intersects f(x-axis) = v-axis

at right angle. Hence, f(V ) is a horizontal line passing through −i. Similarly, if −1 ̸∈ V , then

f(V ) is a circle passing through i and its center lies on the imaginary axis.

2.4.2 Other interesting cases

Another special example of Möbius transformation is z 7→ 1

z
. You are encouraged to understand

this mapping by looking at its action on typical subsets.

Finally, a related mapping is ρ(z) = 1/z. Its action is very similar to that of 1/z. Now, observe

that the above example f is taking the unit circle and its inside to the real axis and the upper-

half plane. Show that f ◦ ρ ◦ f−1(z) = z, i.e., the reflection along the real axis. For this reason,

ρ is considered the reflection along the unit circle. All these will be understood from another

viewpoint later.

2.5 Stereographic Projection

Complex functions also play an important role in geometry. Part of the reasons is revealed

by the above intriguing fact of putting circles and straight lines as a group. For this, we first

introduce a bijection between a circular arc and the real line. Mathematically, we denote

Sn−1 def
:== { x⃗ ∈ Rn : ∥x⃗∥ = 1 } .

Thus, S1 is the unit circle (center at origin with radius one) and S2 is the sphere.

Thomas Au MATH2230A • Notes 2: Complex Functions • 7



σ(  )p
σ(  )q 1

q

-1

p

The mapping σ : S1 \ {(0, 1)} → R is defined by the above picture. Mathematically, the

expression of σ can be easily found by elementary mathematics, e.g., similar triangles. The

expression for its inverse is useful,

σ−1(x) =

(
2x

x2 + 1
,
x2 − 1

x2 + 1

)
.

By revolving the above picture about the y-axis, we have a bijection σ from S2 \ {(0, 0, 1)}
to R2 = C. Either this mapping σ or its inverse is called the stereographic projection. The

expression of σ−1 : C → S2 is given by

σ−1(z) =

(
2Re(z)

|z|2 + 1
,
2 Im(z)

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)
.

We have the following correspondence

(northern hemisphere, equator, southern hemisphere)
σ−→ (outside, unit circle, inside) .

Naturally, we would see the sphere S2 as C = C ∪ {∞}, called the Riemann Sphere.

Straight lines on C will be corresponding to circles passing through the north pole in S2. This

can be illustrated by the second picture. In fact, the projection rays joining the north pole to

the straight line on C will form a plane cutting the sphere at the desired circle. For circles in C,
one may also show that they become other circles in S2.

Previously, we have discussed the mapping f : z 7→ −i(z−1)/(z+1), which maps the unit circle

and its inside to the real axis and the upper-half plane. With the stereographic projection, the

unit circle and its inside corresponds to the equator and the southern hemisphere; also the real

axis and half plane also corresponds to a hemisphere. With this perspective, the mapping f is

in fact a rotation on the sphere taking the north-south hemisphere to the east-west hemisphere.

Likewise, the mapping z 7→ 1/z is also a rotation of the sphere taking north-south to south-north.
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