MATH 2060 Mathematical Analysis II some examples related with uniform convergence

Definition 0.1. f_n is said to be convergent to f on [a,b] if for all $x \in [a,b]$, $\epsilon > 0$, there exists $N = N(x,\epsilon)$ such that for all n > N, $|f_n(x) - f(x)| < \epsilon$.

Definition 0.2. We say that f_n converge uniformly to f on [a, b] if for all $\epsilon > 0$, there exists $N = N(\epsilon) \in \mathbb{N}$ such that for all n > N, $|f_n(x) - f(x)| < \epsilon$.

Proposition 0.1. If $f_n \in R[a, b]$, f_n converge uniformly to f, then $f \in R[a, b]$.

Proposition 0.2. Let $f_n : [a, b] \to \mathbb{R}$ be a sequence of real valued function which converge to f uniformly on [a, b]. Furthermore, suppose there exists M > 0 such that $|f_n| \le M$ for all $n \in \mathbb{N}$. Let $g : \mathbb{R} \to \mathbb{R}$ be a continuous function. Then $g \circ f_n$ converge uniformly to $g \circ f$ on [a, b].

Proof. By uniform continuity theorem, g is uniform continuous on [-M, M]. Let $\epsilon > 0$, there exists $\delta > 0$ such that for all $x, y \in [-M, M]$ and $|x - y| < \delta$, we have $|g(x) - g(y)| < \epsilon$. On the other hand, there exists $N = N_{\delta}$ such that for all n > N, $|f_n(x) - f(x)| < \delta \quad \forall x \in [a, b]$. Therefore, for any $x \in [a, b]$, n > N, we can conclude that

$$|g \circ f_n(x) - g \circ f(x)| < \epsilon.$$

As N depends on δ and the continuity of g only, the convergence is uniform.

Example 0.3. (Mid-term Question) If $f \ge 0$ is a Riemann integrable function on [0,1], then \sqrt{f} is also Riemann integrable.

Proof. Suppose f is bounded below by a positive constant $\delta > 0$, then the situation is easy. For the sake of completeness, we include the proof here.

Let $\epsilon > 0$, there exists a partition \mathcal{P} on [0, 1] such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < 2\epsilon\sqrt{\delta}.$$

Then for such partition \mathcal{P} ,

$$U(\sqrt{f}, \mathcal{P}) - L(\sqrt{f}, \mathcal{P}) \leq \frac{1}{2\sqrt{\delta}} \Big[U(f, \mathcal{P}) - L(f, \mathcal{P}) \Big] < \epsilon.$$

The first inequality is due to the fact that

$$\left|\sqrt{f(x)} - \sqrt{f(y)}\right| = \left|\frac{f(x) - f(y)}{\sqrt{f(x)} + \sqrt{f(y)}}\right| \le \frac{\left|f(x) - f(y)\right|}{2\sqrt{\delta}}.$$

However if f is only bounded below by 0, the estimation is a bit more technical as shown in the tutorial class. Instead of doing this, we may consider $f_n = f + \frac{1}{n}$. And let $g(x) = \sqrt{x}$. By above argument, $\sqrt{f_n} = g \circ f_n \in R[0, 1]$. And f_n is bounded uniformly because of the fact that $f \in R[0, 1]$. Clearly, f_n converge uniformly to f. Hence $g \circ f_n$ converge uniformly to $g \circ f = \sqrt{f}$ as well. By the first proposition, this implies that $g \circ f \in R[0, 1]$ which is our desired result.