Keywords: Sup, Inf, Bounds, Limit

Notation: $\mathbb{N} = \{0, 1, 2, 3, \dots\}$

- 1. Let S be a non-empty subset of \mathbb{R} . Assume that $\sup(S)$ exists. Show then that it is 'unique'. (Hint: Suppose there were two of them, say s_1 and s_2 . You should try to show that $s_1 = s_2$, hence unique!)
- 2. Let A be a non-empty subset of \mathbb{R} , b any positive real number. Show that $\sup(bA) = b \cdot \sup(A)$, where bA is the set defined by

$$bA = \{bx \mid x \in A\}.$$

- 3. Let a, b be two real numbers satisfying a < b. Show that $\sup(a, b) = b$ (the symbol on the left-hand side means "supremum of the set (a, b)".)
- 4. In each of the following questions, determine whether the set is "bounded" or "unbounded" (above and below!) and find (i.e. <u>no need to prove!</u>) an upper bound and a lower bound if you think it is bounded above (below). If you think it is unbounded above (below), show that this is so:

(a)
$$\left\{ \frac{1}{x^5} \mid x \in \mathbb{R} \setminus \{0\}. \right\}$$

(b) $\left\{ \frac{1}{x|x|} \mid x \in \mathbb{R} \setminus \{0\} \right\}$

- 5. Consider the set $S = \left\{ \frac{2^n 1}{2^n + 1} \mid n \in \mathbb{N} \right\}$. Is S bounded above (below)? Prove or disprove it by giving reasons.
- 6. Show, by using the ϵN definition of infinite limit, that
 - (a) $\lim_{x \to \infty} \frac{x^{101} 1}{x 1} = \infty$
 - (b) $\lim_{x\to\infty} e^x = \infty$ (Hint: Show first that $e^x > 1 + x$, if x > 0 by using the definition of e^x).
 - (c) Find, using your calculus knowledge, sup and inf of the following set:

$$S = \left\{ y \mid y = (1 - x^2)^2, x \in [0, 2] \right\}$$