Assignment 3

Topics: Riemann Sum, Uniform Continuity, Uniform Convergence, Function Sequence, Series

Tools learned in other courses, which may be useful

- The 3 Mean Value Theorems
- L'Hôpital's Rule

Assignments

1. (Riemann sum) Let $0<a<b$ and P be the partition of the interval $[a, b]$ given by the points
$x_{0}=a, x_{1}=a+\frac{(b-a)}{n}, x_{2}=a+\frac{2(b-a)}{n}, \cdots, x_{i}=a+\frac{i(b-a)}{n}, \cdots, x_{n}=b$.
(a) Using this partition, write down the lower sum

$$
L(P, f)
$$

of the function $f(x)=x^{2}$.
(b) Find the limit

$$
\lim _{\|p\| \rightarrow 0} L(P, f)
$$

Hint: The following formula may be useful: $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
2. (Uniform Continuity) Show that the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

given by

$$
f(x)=\arctan x
$$

is uniform continuous.
Hint: Use one of the 3 value theorems, i.e. Rolle's Theorme, Lagrange's Mean Value Theorem or Cauchy's Mean Value Theorem.
3. (Uniform Continuity) Show that the function

$$
f:(0,1) \rightarrow \mathbb{R}
$$

given by

$$
f(x):=\frac{1}{x^{2}}
$$

is not uniformly continuous.
4. (Uniform Continuity*) Show that the function

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

given by

$$
f(x)=\left\{\begin{array}{cc}
x \sin (1 / x) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

is uniform continuous.
5. For each of the following function sequences, determine whether it is pointwise convergent or uniform convergent. Give reasons to explain.
(a) $p_{n}(x)=n x e^{-n x^{2}}$
(b) $q_{n}(x)=\frac{n x}{1+n^{2} x^{2}}$, on $\left[\frac{1}{2}, 1\right]$
6. Determine whether the following series is pointwise convergent or uniformly convergent. Give reasons to explain.

$$
\sum_{k=0}^{\infty} x^{k}(1-x)
$$

where $x \in(-1,1]$.

