math2055 exercise 2

contents: $\epsilon - N$ definition, $\epsilon - \delta$ definition of limits, intermediate value theorem, extreme value theorem, Bolzano-Weierstrass Theorem

Notations

- $\mathbb{N}' = \{1, 2, 3, \cdots\}$
- $\mathbb{N} = \{0, 1, 2, 3, \cdots\}$
- $\stackrel{\text{'def,}}{=}$ will be abbreviated by ':='.
- 1. Let $x : \mathbb{N}' \to \mathbb{R}$ (1) be given by $x(n) := \frac{n^2 + n + 1}{n^3}$. Show, using the ϵN definition of limit that

$$\lim_{n \to \infty} x(n) = 0$$

2. Consider the sequence

$$x_n := \frac{2^n + 3}{2^n + n + 10}$$

show using the $\epsilon - N$ definition, that $\lim_{n \to \infty} x_n = 1$.

3. In the following question and the next one, we describe two methods to solve $\lim_{x\to 3} x^2 = 9$ using the $\epsilon - \delta$ method.

Method (I)
(1)
$$|x^2 - 9| < \epsilon$$
 (Goal)
Want to find δ_1 such that (1) will be satisfied, provided that the
following inequality hold:
(2) $0 < |x - 3| < \delta_1$ (Starting Point)
(3) From (1) we obtain that if
 $3 - \underbrace{(3 - \sqrt{9 - \epsilon})}_{\delta^*} < x < 3 + \underbrace{(\sqrt{9 + \epsilon} - 3)}_{\delta^{**}}$ (1.1)
then x^2 satisfies $9 - \epsilon < x^2 < 9 + \epsilon$.
Now if $0 < |x - 3| < \min_{\delta_1} \{\delta^*, \delta^{**}\}$, then
(4) $\cdots < x < \cdots$
 $\cdots < x^2 < \cdots$
(5) From (4), it follows that $|x^2 - 9| < \epsilon$

¹This kind of functions are usually called 'sequence' and x(n) is denoted by the symbol x_n . The whole sequence is usually denoted by the symbol $\{x_n\}$.

Answer the following question concerning Method (I):

- (a) Explain the geometric meaning of the two quantities δ^* and δ^{**} in (1.1). (Hint: Drawing a picture may help! They are distance between the point x = 3 and some other points (but which points?))
- (b) Fill in the missing details in (4)
- (c) Show that $\delta^{**} < \delta^*$

Method (II) (A) From (1) in Method (I) in the preceding question, we obtain $|x - 3||x + 3| < \epsilon$ (B) Suppose $0 < |x - 3| < \delta_2$ (C) By choosing $\delta_2 = 1$, we obtain from (B) $|x + 3| \le 7$ (D) $|x + 3| \le 7$ (E) Using (B) and (D), we get $|x^2 - 3^2| \le 7\delta_2$ (F) Given any $\epsilon > 0$, we can choose $\delta_2 :=$?? to complete the proof.

Answer the following questions:

(a) Explain why in (C), we claimed that:

'we obtain from (B) that $|x+3| \leq 7$?

- (b) What is/are the possible choices of δ_2 in ?? of Method (II), (F)?
- (c) Comparing Method (I) and Method (II), find all values of ϵ (if any) for which

 $\delta_1 < \delta_2.$

- 4. (Exercise on the Extreme Value Theorem)
 - (a) Let $f:[1,3] \to \mathbb{R}$ be a function. Write down the definition of

f is not differentiable at x = 2.

(b) Let c be a point in the set [1,3] in part (a). Write down your definition of

c is an absolute maximum point of f.

- (c) In the preceding definition, <u>state</u> whether it is <u>necessary</u> to assume that the function is <u>continuous</u>. Explain why you think it is <u>necessary</u>/not necessary.
- (d) Define a function $g: [1,3] \to \mathbb{R}$ such that (i) g is continuous at every point in [1,3], (ii) g is not differentiable at the point x = 2, (iii) f has an absolute maximum point at x = 1 and (iv) an absolute minimum point at x = 2.
- 5. (Intermediate Value Theorem) Using the intermediate value theorem, show that the equation

$$x^3 - \sin 100x - 1000 = 0$$

has a solution in the domain [0, N] for some sufficiently large natural number N.

6. (Bolzano-Weierstrass Theorem) Consider the sequence $\{x_n\}$ defined by

$$x_n := (-1)^n \left(\frac{2^n - 1}{2^n + 1}\right)$$

- (a) Show, using school mathematics, that it is bounded above and bounded below.
- (b) Find two subsequences of $\{x_n\}$ (give them the names $\{x_{n'_k}\}$ and $\{x_{n''_k}\}$) which are convergent.