math2055 exercise 2

contents: $\epsilon-N$ definition, $\epsilon-\delta$ definition of limits, intermediate value theorem, extreme value theorem, Bolzano-Weierstrass Theorem

Notations

- $\mathbb{N}^{\prime}=\{1,2,3, \cdots\}$
- $\mathbb{N}=\{0,1,2,3, \cdots\}$
- 'def, will be abbreviated by ':='.

1. Let $x: \mathbb{N}^{\prime} \rightarrow \mathbb{R} \quad\left({ }^{1}\right)$ be given by $x(n):=\frac{n^{2}+n+1}{n^{3}}$. Show, using the $\epsilon-N$ definition of limit that

$$
\lim _{n \rightarrow \infty} x(n)=0
$$

2. Consider the sequence

$$
x_{n}:=\frac{2^{n}+3}{2^{n}+n+10}
$$

show using the $\epsilon-N$ definition, that $\lim _{n \rightarrow \infty} x_{n}=1$.
3. In the following question and the next one, we describe two methods to solve $\lim _{x \rightarrow 3} x^{2}=9$ using the $\epsilon-\delta$ method.

Method (I)
(1) $\left|x^{2}-9\right|<\epsilon$ (Goal)

Want to find δ_{1} such that (1) will be satisfied, provided that the following inequality hold:
(2) $0<|x-3|<\delta_{1}$ (Starting Point)
(3) From (1) we obtain that if

$$
\begin{equation*}
3-\underbrace{(3-\sqrt{9-\epsilon})}_{\delta^{*}}<x<3+\underbrace{(\sqrt{9+\epsilon}-3)}_{\delta^{* *}} \tag{1.1}
\end{equation*}
$$

then x^{2} satisfies $9-\epsilon<x^{2}<9+\epsilon$.
Now if $0<|x-3|<\underbrace{\min \left\{\delta^{*}, \delta^{* *}\right\}}_{\delta_{1}}$, then
(4) $\cdots<x<\cdots$
$\cdots<x^{2}<\cdots$
(5) From (4), it follows that $\left|x^{2}-9\right|<\epsilon$

[^0]Answer the following question concerning Method (I):
(a) Explain the geometric meaning of the two quantities δ^{*} and $\delta^{* *}$ in (1.1). (Hint: Drawing a picture may help! They are distance between the point $x=3$ and some other points (but which points?))
(b) Fill in the missing details in (4)
(c) Show that $\delta^{* *}<\delta^{*}$

Method (II)
(A) From (1) in Method (I) in the preceding question, we obtain

$$
|x-3||x+3|<\epsilon
$$

(B) Suppose

$$
0<|x-3|<\delta_{2}
$$

(C) By choosing $\delta_{2}=1$, we obtain from (B)

$$
|x+3| \leq 7
$$

(D) $|x+3| \leq 7$
(E) Using (B) and (D), we get

$$
\left|x^{2}-3^{2}\right| \leq 7 \delta_{2}
$$

(F) Given any $\epsilon>0$, we can choose $\delta_{2}:=$?? to complete the proof.

Answer the following questions:
(a) Explain why in (C), we claimed that:

$$
\text { 'we obtain from (B) that }|x+3| \leq 7 \text { '? }
$$

(b) What is/are the possible choices of δ_{2} in ?? of Method (II), (F)?
(c) Comparing Method (I) and Method (II), find all values of ϵ (if any) for which

$$
\delta_{1}<\delta_{2}
$$

4. (Exercise on the Extreme Value Theorem)
(a) Let $f:[1,3] \rightarrow \mathbb{R}$ be a function. Write down the definition of

$$
f \text { is not differentiable at } x=2 \text {. }
$$

(b) Let c be a point in the set $[1,3]$ in part (a). Write down your definition of
c is an absolute maximum point of f.
(c) In the preceding definition, state whether it is necessary to assume that the function is continuous. Explain why you think it is necessary/not necessary.
(d) Define a function $g:[1,3] \rightarrow \mathbb{R}$ such that (i) g is continuous at every point in $[1,3]$, (ii) g is not differentiable at the point $x=2$, (iii) f has an absolute maximum point at $x=1$ and (iv) an absolute minimum point at $x=2$.
5. (Intermediate Value Theorem) Using the intermediate value theorem, show that the equation

$$
x^{3}-\sin 100 x-1000=0
$$

has a solution in the domain $[0, N]$ for some sufficiently large natural number N.
6. (Bolzano-Weierstrass Theorem) Consider the sequence $\left\{x_{n}\right\}$ defined by

$$
x_{n}:=(-1)^{n}\left(\frac{2^{n}-1}{2^{n}+1}\right)
$$

(a) Show, using school mathematics, that it is bounded above and bounded below.
(b) Find two subsequences of $\left\{x_{n}\right\}$ (give them the names $\left\{x_{n_{k}^{\prime}}\right\}$ and $\left\{x_{n_{k}^{\prime \prime}}\right\}$) which are convergent.

[^0]: ${ }^{1}$ This kind of functions are usually called 'sequence' and $x(n)$ is denoted by the symbol x_{n}. The whole sequence is usually denoted by the symbol $\left\{x_{n}\right\}$.

