Materials \& Tutorial for 1010a,b Weeks 4 (Tues)

Topics covered in lectures (either group A or group B)

A Word on Notations:

In the following, we will use ' $\lim _{x \rightarrow c}$ ' and ' $\lim _{x \rightarrow c}$ ' interchangeably.

(Must-know)

(1) Definition of Function, domain, co-domain, range, injective functions, conditions guaranteeing existence of inverse function
(2) Examples of functions, (i) polynomials (each degree n polynomial equation has at most n roots), (ii) sine, cosine functions; (iii) exp, log functions; $\underline{\log \text { as 'inverse' function of exp function }}$
(3) The relationship between
$e \xlongequal{\text { def }} 1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \quad \& \quad \lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$
(4) The relationship between $\exp (x) \& e^{x}$
(5) Definition of derivative as a 'limit'
(6) 'Derivative exists at c ' implies 'continuous at c '
(7) Need of the concept of 'limit' in order to define 'derivative'
(8) 'Function f has derivative at c '
$\Longrightarrow f$ satisfies ${ }^{\prime} \lim _{x \rightarrow c}(f(x)-f(c))=0$ ',
$\Longrightarrow{ }^{\prime} \lim _{x \rightarrow c} f(x)=f(c)$.
(9) The last sentence in the point (8) above means:
(i) $\lim _{x \rightarrow c, x<0} f(x)$ exists (\& finite);
(Notations: $\lim _{x \rightarrow c, x<0}$ is written as $\lim _{x \rightarrow 0^{-}}$)
(ii) $\lim _{x \rightarrow c, x>0} f(x)$ exists (\& finite);
(Notations: $\lim _{x \rightarrow c, x>0}$ is written as $\lim _{x \rightarrow 0^{+}}$) AND
(iii) 'both' of these limits are equal to the VALUE of f at c.
(iv)* A function f satisfying (i),(ii) \& (iii) is called 'continuous at the point $x=c^{\prime}$

$$
\text { i.e. } \lim _{x \rightarrow c} f(x)=f(c) \text { means } f \text { is continous at } x=c
$$

(10) If 'limit' exists, it is unique (Comments:

- Note how mathematicians usually 'formulate' uniqueness!)
- To show 'uniqueness' of limits, we may need the $\epsilon-N$ definition in point (3) below.)
(11),,$+- \times, \div$ properties of 'limits' (Proofs omitted!)

(Good-to-Know, but NOT "Must-know")

(1) Generalized Binomial Theorem
(2) Euler's Formula $\exp (\sqrt{-1} \cdot x)=\cos x+\sqrt{-1} \cdot \sin x,(x$ is any real no., measured in 'radians')
(You don't need to know yet)

* $\epsilon-N$ definition of the phrase ${ }^{'} \lim _{x \rightarrow \infty} f(x)=L$ '

(Topics mentioned, not yet fully discussed.

BUT used in Assmt 1)

- The fact: ' f ' >0 ' implies ' f is strictly increasing' Questions:
(1) What is the 'definition' of 'strictly increasing'?
(2) For what 'values' of x is $f^{\prime}>0$? For what values of x is f strictly increasing?
- Method of graph (i.e. 'curve' defined by $y=f(x)$) sketching
- Concept of asymptotes
- '2nd derivative >0 ' (\& '1st derivative $=0$ ') implies 'local minimum' (also known as 'relative minimum')
- '2nd derivative <0 ' (\& '1st derivative $=0$ ') implies 'local maximum' (also known as 'relative maximum')
- Definition of local minimum (maximum)

Assignments for Week 3 Tutorial

Topics

(1) Derivative from First Principle (also known as 'from Definition')
(2) Simple Curve sketching
(3) Method of using strictly increasing/decreasing function to get strict inequality

Assignments

1. Consider the function $f(x)=(x-1)|x|$ defined on the domain $D=(-\infty, \infty)$.
(a) Compute the limit $\lim _{h \rightarrow 0^{-}} \frac{f(c+h)-f(c)}{h}$, when $c=0$
(b) Compute the limit $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$, when $c=0$
(c) Determine from (i) \& (ii) above whether $f(x)=(x-1)|x|$ has derivative at $x=c=0$.
2. (Skip if there isn't much time) Repeat the above question for the function $f(x)=(x-1)^{b}|x|$ where $b=2,3,4, \cdots$
3. (Application of derivative to show '(strictly) increasing/decreasing(ness)' of a function')
Let $f:(0, \infty) \rightarrow \mathbb{R}$ be a function given by

$$
f(x)=1+\frac{x}{2}-\sqrt{1+x}
$$

(a) Show that $f^{\prime}(x)>0$
(b) Deduce from (a) that the following inequality holds for any $x>0$:

$$
1+\frac{x}{2}>\sqrt{1+x}
$$

(c) Similarly, show (by considering a certain function) that

$$
\sqrt{1+x}>1+\frac{x}{2}-\frac{x^{3}}{8}, \text { for any } x>0
$$

4. (Comment: In this question, we will use the notation:

$$
\lim _{x \rightarrow \infty} f(x)=\infty
$$

to mean 'as x increases indefinitely, $f(x)$ increases indefinitely'. The meaning of

$$
\lim _{x \rightarrow \infty} f(x)=-\infty
$$

is similar.)
Consider the function $f(x)=\frac{x^{n}(x-1)^{n}}{(x-3)^{n}}$.
(a) $n=1$ case
(i) State what the maximal domain of f is.
(ii) State where the function has zeros (i.e for what x is it true that $f(x)=0$)
(iii) State where the function is >0, is <0
(iv) State (and give simple reasons) what this limit is:

$$
\lim _{x \rightarrow \infty} f(x)
$$

(v) State (and give simple reasons) what this limit is:

$$
\lim _{x \rightarrow-\infty} f(x)
$$

(vi) What are the local maximum (or local minimum) value of the function f (if there is any) ? Give reasons.
(vii) Sketch the "graph" of the function (i.e. "draw rough shape of the curve $y=f(x)$)
5. $n=2$ case Repeat the questions above.
(Comment:) This simple method works for all rational functions of the form

$$
r(x)=\frac{\left(x-a_{1}\right)^{b_{1}}\left(x-a_{2}\right)^{b_{2}} \cdots\left(x-a_{k}\right)^{b_{k}}}{\left(x-c_{1}\right)^{d_{1}}\left(x-c_{2}\right)^{d_{2}} \cdots \cdots\left(x-c_{m}\right)^{b_{m}}},
$$

where the exponents are all natural numbers.

