
Notes for 1010a,b Weeks 2 and 3

Topics:

(f ◦ g, exp, ln)

1. Review of Logarithm

In school, we learned that log10 x is given by

∗10y = x ⇐⇒ y = log10 x

Supposing that the above equation has always a solution. We can
argue (by ‘analogy’) that 10 is not the only choice for ”base” as any
positive real number works. So if we choose e (see “Comments” below
for a definition of e) to be the base and obtain

ey = x,

then we have
eloge x = x.

Notation
We will often abbreviate loge x by the symbol ln x.

Comments

(1) Assuming the equation elnx = x, x > 0, together with the fact
that (we’ll prove it in point (3) below!)

ew = exp(w),

where w is any real no., we will show that the functions “ln”
and “exp” are inverse functions of each other.

(In the Appendix section, i.e. section 3 below, we will discuss
two things: (i) the concept of “inverse function” and (ii) un-
der what conditions there exists an inverse function to a given
function).

(2) What is the number e? We define (there are other definitions!)
e to be the number given by the infinite sum

e = exp(1) = 1 +
1

1!
+

1

2!
+

1

3!
+ · · · .

∗How do we know this equation has solution y if the given x is not a natural no.?
1
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(3) Using the above definition of e (which is approximately 2.718...),
we can make sense of what we mean by ew (at least) in the case
when w is a natural number. In such a case, ew is just given by
the following expression:

ew =

[
lim
n→∞

(
1 +

1

n

)n]w
,where w = 0, 1, 2, · · ·

= lim
z→∞

(
1 +

w

z

)z

,(1.1)

where z
def
= nw (which is also a natural no.)

However, if we want to obtain ew for any real no. w, (not only for
natural nos.!) then we have to use the “Generalized Binomial Theorem
(GBT)”, † where z is now any real no., to compute the term

(
1 + w

z

)z
in (1.1).

Doing this, we get a completely analogous formula to (1.1) above, i.e.

For simplicity, we assume w > 0!

[
lim
n→∞

(
1 +

1

n

)n]w
= lim

n→∞

(
1 +

1

n

)n w

Now, let z = nw, then 1
n
= w

z
(or n = z

w
), and we get(

1 +
1

n

)nw

=
(
1 +

w

z

)z

As n → ∞ we obtain z → ∞, hence

(1.2) ew = lim
z→∞

(
1 +

w

z

)z

(• But now z
def
= nw is a real no., because w is a real no.!)

†GBT says: (1 + x)α = 1 + α + α·(α−1)
2! x2 + α·(α−1)(α−2)

3! x3 + · · · , where in
the ‘numerator’, one can put any real no., but in the denominator, only natural

numbers. (Question) For what values of x is this formula valid?
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Conclusion Since

exp(w) = 1 + w +
w

2!
+

w3

3!
+ · · ·

= lim
ẑ→∞

(
1 +

w

z̃

)z̃

,where z̃ is any natural no.(1.3)

= lim
ẑ→∞

(
1 +

w

z

)z

where z is any real no.(1.4)

= ew

therefore, we conclude that

(1.5) exp(w) = ew for any real no. w.

Comment: (1.3) = (1.4) because ‘limit’, if it ‘exists’ is unique.

Consequence 1
By (1.5), the equation

elnx = x,∀x > 0

is the same as

exp(lnx) = x, ∀x > 0

That is, “exp” is the inverse function of “ln” function.

Consequence 2
Using this, we get the formula ln(1 + x) = x− x2

2
+ x3

3
+ · · · .

Now, we proceed to “prove” this (the proof is correct, but there are
a lot of “holes” to be filled in!)

• Summary So Far
We have learned (i) polynomial (functions), (2) cosine, sine functions,
(3) exp, ln functions, (4) +,−,×,÷ of functions (• Note: when using
÷, make sure that the denominator isn’t zero!).

2. “Proof” of the Formula for logarithm

You can skip this section if you want. But do remember the formula
for ln(1+x). It’s important!

We start by considering the equation

eln(1+x) = 1 + x
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for each 1 + x > 0.

By using the “product” definition of ew (i.e. (1.2)), the left-hand side
becomes

lim
n→∞

(
1 +

ln(1 + x)

n

)n

,

hence for large n, we have(
1 +

ln(1 + x)

n

)n

≈ 1 + x.

Taking nth root on both sides of this, we obtain

1 +
ln(1 + x)

n
≈ (1 + x)1/n

Now when the Generalized Binomial Theorem is applied to the right-
hand side of it, we obtain

1 +
ln(1 + x)

n
≈ 1 +

1
n

1!
· x+

1
n
( 1
n
− 1)

2!
x2 +

1
n
( 1
n
− 1)( 1

n
− 2)

3!
x3 + · · ·

implying (after canceling the term “1” on both sides)

ln(1 + x)

n
≈

1
n

1!
· x+

1
n
( 1
n
− 1)

2!
x2 +

1
n
( 1
n
− 1)( 1

n
− 2)

3!
x3 + · · ·

and implying (after multiplying by n on both sides)

ln(1 + x) ≈ n

{ 1
n

1!
· x+

1
n
( 1
n
− 1)

2!
x2 +

1
n
( 1
n
− 1)( 1

n
− 2)

3!
x3 + · · ·

}
≈ x+

( 1
n
− 1)

2!
x2 +

( 1
n
− 1)( 1

n
− 2)

3!
x3 + · · ·

≈ x− x2

2
+

x3

3
+ · · ·

when n is very large (because all the terms involving 1/n go to zero as
n becomes indefinitely large (In symbol, the underlined phrase is writ-
ten as n → ∞ )). �

Comment
To make the above proof watertight, one has to put a lot more effort.
We will not go into this, however!
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3. Appendix

In this Appendix, we give some remarks on the inverse function g of
any given function f : D → E. (As always, D,E are subsets of the
set of real nos., i.e. the set denoted by R (or written as (−∞,∞), or
{x| −∞ < x < ∞})

Inverse Function
Let f : D → E be a function, then another function g : E → D is an
inverse function of f , provided that

(1) The range R(f) (defined below) of f is equal to the co-domain
E;

This ensures that the domain of g is E.

(2) The function f is an injective function.

This ensures that each y ∈ E has 1 and only 1 output, i.e. g(y)

In point (1) above, we mentioned the word “range”. We now define
it.

Range of a Function.
Let f : D → E, then the range of f , denoted by the symbol R(f) is
the set

R(f)
def
= {y ∈ E | y = f(x), for some x ∈ D}

Comment
In daily language, the range of f is “the set of those y’s reachable by
all x in D”. It is instructive to compare this way of talking about R(f)
with the one which we wrote down above.

3.1. Conditions for Inverse Function.

3.1.1. First Condition for Inverse Function: R(f) =E. This
condition says:

Given any y ∈ E, we can always find x ∈ D satisfying

y = f(x)
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(In other words, the equation y = f(x) has always a solution x ∈ D).

* Digression (How to Sketch Inverse Function)
In school math, we learned that to sketch inverse function of a given
function f – one just “reflect” the curve (or “graph”) of the function
f (i.e. y = f(x)) about the straight line y = x. This method can be
justified by (1) rotating the two axes (i.e. the x− and the y− axis
counterclockwise by 90 degrees, then (2) change the negative y− axis
back to the position of the positive y− axis by “reflecting” about the
vertical axis.)‡

3.1.2. Second Condition for Inverse Function – Injectivity.
In order for a function f : D → E to have inverse function, f needs
also to be injective. By this we mean any f(x) in the range of f origi-
nates from one and only one element x.

The above description is, however, not too useful, so we reformulate
it as

* Another Way of Defining Injective Function
f : D → E is injective if whenever f(x1) = f(x2), then x1 = x2. Or
more formally,

∀x1, x2 ∈ D | if f(x1) = f(x2), then x1 = x2.

A convenient condition to guarantee injectivity: df/dx > 0
Let f : (a, b) → R. Suppose that df

dx

∣∣
x=c

> 0 for each c in (a, b). Then
we will show that f is strictly increasing for each c in (a, b).

Comment:
The same holds if we replace > 0 by < 0 throughout the domain.

‡The rotation of a point (x, y) in the xy−plane can be expressed using something
called 2×2 matrix. If we denote a point (x, y) by a 2×1 (or “column”) matrix, i.e.(

x
y

)
, then the 90 degrees counterclockwise rotation can be shown to be given by

the following object (known as 2× 2 matrix):(
0 −1
1 0

)(
x
y

)
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Since ‘f is strictly increasing in (a, b)’ =⇒ ‘f is injective’ (Question:
Why? Can you prove it?), to show injectivity, we only need to show
df
dx

∣∣
x=c

> 0 for each point c in the domain. This motivates us to study
derivative of a function.

E.g.
Show that the function f : (0,∞) → R given by f(x) = x2−1

x
has in-

verse function g : R → (0,∞).

Solution

(1) the range R(f) is equal to the set R, because for each y ∈ R,
we have

y =
x2 − 1

x
=⇒ x2 − xy − 1 = 0

=⇒ x =
y ±

√
y2 + 4

2

=⇒ x =
y +

√
y2 + 4

2

(the last line comes from our requirement that x > 0). Hence
x can be solved for each y > 0

(2) Next, we can compute (alternatively, we can see from the for-
mula in point (1) that x is uniquely determined by y)

d(x− (1/x))

dx

at each x ∈ (0,∞) to see that df
dx

> 0, hence f is injective.

Conclusion
The function f(x) = (x2 − 1)/x from the domain (0,∞) to the range
R has an inverse function.
(Question: What is the formula for this inverse function?)

4. A Word on Piecewise Defined Functions

Some students asked me the question: “What is the absolute value
function?” This function, just as many other functions in this course,
are known as “piecewise defined” functions. They are defined by different
rules on different regions of the domain.
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E.g.

f(x) = |x| def
=

 −x if x < 0
0 if x = 0
x if x > 0

Comment: This function is from the domain R to the co-domain R. In
the region (−∞, 0) the function is given by −x, in the region {0}, the
function is given by 0 and in the region (0,∞), it is given by x.

This function gives rise to a curve y = |x| which is V−shaped.

Question. Sketch the curve given by y = |1 − |x||. Compare it with
the curve y = (1− x2)2.


